
Functional Specification and Simulation of a Floating Point
Co-Processor for SPUR [1]

Glenn D. Adams

Computer Science Division
Electrical Engineering and Computer Sciences
University or California, Berkeley, CA 94720

ABSTRACT

This report describes the internal organization of the SPUR floating

point chip. The primary representation of the FPU microarchitecture is its

functional level executable hardware description. This description serves

as the primary chip design verification tool at both the functional and the

layout levels. The text of this paper gives the operation sequence for the

chip's instructions and details its datapath and control structures.

1. INTRODUCTION

The SPUR Floating Point Unit is a single chip, tightly coupled co-processor intended

for the SPUR multi-processor workstation[HEL85]. This chip boosts the floating point

performance of the SPUR architecture by executing the most common floating point

operations directly. The supported arithmetic operations include addition, subtraction,

multiplication and division on 80 bit operands. These operations require 4, 4, 8 and 20

processor cycles respectively; these cycles may be overlapped with the central processor.

All arithmetic is compatible with the IEEE standard P754[IEE85]. With software support,

the SPUR system will achieve a high performance implementation of the complete stan

dard.

This paper focuses on the internal architecture of the SPUR FPU. The primary

representation of the FPU microarchitecture is the executable description written m

I SPUR is sponsored by DARPA under contract order 482427-25840 by NAVALEX. Addition&.l computer

resources provided by DARPA (order *-'811) monitored by Nav&.l Electronic Systems Comma.nd under Contract

No. N0003Q-84-C-008g.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 1986 2. REPORT TYPE

3. DATES COVERED
 00-00-1986 to 00-00-1986

4. TITLE AND SUBTITLE
Functional Specification and Simulation of a Floating Point Co-Processor
for SPUR

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes the internal organization of the SPUR floating point chip. The primary
representation of the FPU microarchitecture is its functional level executable hardware description. This
description serves as the primary chip design verification tool at both the functional and the layout levels.
The text of this paper gives the operation sequence for the chip’s instructions and details its datapath and
control structures.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

62

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

- 2-

Slang, a hardware description language[FoD83]. This description defines the functions the

chip will perform and outlines the structure of the microarchitecture implementation.

The hardware is described at the abstract logic level with no implementation technology

implied. Because it contains both structure and function, the description will assist in

simulation at both the functional and transistor levels. Thus, it provides the link between

the architectural specification of the chip and its VLSI implementation.

Because the chip is fully specified by its executable description, this paper adds no

new information to it. Rather, it clarifies and annotates the hardware description. To

begin, an overview of the chip architectural description including the CPU interface

specification is given. This section provides the necessary background for understanding

the chip internals. The details of the microarchitecture are then presented with separate

sections devoted to the chip datapath and control. Finally, the strategies for testing the

hardware description are discussed. This paper does assume familiarity with the SPUR

multi-processor workstation project; for reference see [HEL85] and [Kat85].

2. CHIP ORGANIZATION OVERVIEW

2.1. Introduction

The work presented in this paper emphasizes the implementation of the SPUR FPU

rather than its design rationale. However, an overview of the chip's functional require

ments is necessary to understand the design constraints placed on its implementation. For

this chip, there are two distinct sources of design constraints. First are those constraints

imposed by the purely architectural features of the chip, including its instruction set, sup

ported data types and special capabilities needed for IEEE compatibility. The chip archi

tectural description as given in [Lee86] has had the most profound effect on the internal

organization of the chip. Its specifications in large part determined the structure of the

datapaths where almost all of the chip's functions are performed. This report assumes

familiarity with the FPU architectural description document; its contents will only be

summarized here with emphasis on the implications for chip implementation.

In addition, specific constraints are imposed on the chip control by the requirements

of the FPU-CPU interface. A detailed specification of these requirements may be found in

[HaK86]. A more complete explanation of the chip control organization is given in this

paper to supplement the purely functional requirements seen in the interface specification

- 3-

document. Finally, a brief overview of the Slang hardware description language and simu

lator [FoD83] provides a background for understanding the coding of the hardware

description.

2.2. Architectural Description

The overall goal of the SPUR FPU chip is to increase the performance of IEEE arith

metic as much as possible by implementing the most commonly used operations, data

types and data representations in hardware. While only a subset of the full standard can

be implemented on a single chip, the hardware provides the primitives for the software

implementation of the rest of the standard. The SPUR FPU adds both instructions and

data types directly to the SPUR workstation architecture and therefore is known as a

tightly coupled co-processor. Consequently, the FPU mirrors the SPUR load/store archi

tecture and in fact uses the same instruction format.

Table 1a shows the complete arithmetic operation set required by the IEEE standard

highlighting the operations implemented by the SPUR FPU chip.

Table la. IEEE Required Operations and SPUR FPU Instructions

Type of Operation SPUR FPU Instruction

add, subtract FADD, FSUB

multiply, divide FMUL, FDIV

remainder, square root

floating point CVTD,CVTS

format conversion LD_DBL,LD_SGL

round to integer

decimal conversion

comparison FP_CMP

The primary arithmetic set for the chip consists of five operations (add, subtract, multi

ply, divide and compare) implemented in a single data format. The complete instruction

set for the SPUR FPU chip is given in Table 1 b. Note that two convert instructions and

three data transfer operations were added to the primary arithmetic set to enhance the

performance of data types and operations not directly supported by the hardware. The

memory operations that are supported allow the transfer of all floating point data types

directly to and from the chip using addresses generated by the CPU.

The single data format supported by the hardware (known as "extended format") is

illustrated in Figure 1 along with the other two memory formats. The extended format

- 4 -

Table lb. SPUR FPU Instructions

ARITHMETIC and DATA TRANSFER INSTRUCTIONS

Instruction Syntax Instruction Semantics

FADD Rd,Rsl,Rs2 FPURd <- FPU Rsl + FPU Rs2
FSlJB Rd,Rsl,Rs2 FPURd <- FPU Rsl - FPU Rs2
FMUL Rd,Rsl,Rs2 FPURd <- FPU Rsl * FPU Rs2
FDIV Rd,Rsl,Rs2 FPURd <- FPU Rsl / FPU Rs2
FCMP cond,Rsl,Rs2 FPSW(cond) <- result relation
FABS Rd,Rsl,O FPURd <- FPU Rsl with sign = 0
FNEG Rd,Rsl,O FPURd <- FPU Rsl with inverted sign
FMOV Rd,Rsl,O FPURd <- FPU Rsl
CVTD Rd,Rsl,O FPU Rd <- FPU Rsl rounded to double
CVTS Rd,Rsl,O FPURd <- FPU Rsl rounded to single

LOAD INSTRUCTIONS

Instruction Syntax Instruction Semantics

LD_SGL Rd,Rsl,RC FPURd <- M [(Rsl + RC)
LD_DBL Rd,Rsl,RC FPURd <- M [(Rsl + RC)
LD_EXTI Rd,Rsl,RC FPU Rd <- M [(Rsl + RC)
LD_EXT2 Rd,Rsl,RC FPURd <- M [(Rsl + RC)

STORE INSTRUCTIONS
Instruction Syntax Instruction Semantics

ST_SGL Rs2,Rsl,SC FPU Rs2 -> M [(Rsl + SC)
ST_DBL Rs2.Rsl,SC FPU Rs2 -> M [(Rsl + SC)
ST_EXTl Rs2,Rsl,SC FPU Rs2 -> M [(Rsl + SC)
ST_EXT2 Rs2.Rsl,SC FPU Rs2 -> M [(Rsl + SC)

0

SINGLE S I Exp<7:0> I Fraction<22:0> I I I I I I

153 52 0

DOUBLE S I Exp< 10:0> I Fraction<51:0>

0

EXTENDED s I Exp<l4:0> I Ill Ill/

0

Fraction<63:0>

Figure 1. SPUR FPU memory formats.

- 5 -

consists of 87 bits containing three numeric fields (sign, exponent and fraction) and one

field each to describe the data and rounding type of the number. Inside the chip, a

separate datapath is dedicated to each of the numeric fields. The data type field is used

to determine whether a number may be handled correctly by the arithmetic hardware,

while the rounding field is used by the support software to maintain rounding precision.

As shown in Table 2, the hardware does not implement operations for certain

representations of numbers [2].

Table 2. Exception Detection Cor FPU Operations

Operand Exception Type Result Exception Type

Operation Zero Denorm Norm Inr.

FADD,FSUB H H H trap

FMUL H trap H trap

FDIV H/trap trap H trap

FP.CMP H H H trap

CVTS,CVTD H H H trap

FNEG,FABS H H H H

FMOV H H H H

Legend:
H: Hardware must produce correct result.

trap: Hardware signals exception but does not produce result.

D: Hardware signals exception and produces invalid result.

- : Cannot occur.

NaN Ovft. UndO.

trap D D
trap D D
trap D D
trap - -
trap D D

H - -
H - -

In general, the hardware can generate a correct answer for "ordinary" arithmetic opera

tions. Arithmetic exceptions are for the most part simply detected and posted by the

hardware; software support is required to generate the correct value for the excepted

operation. Subsetting both the data formats and data representations implemented in

hardware greatly simplifies the chip design.

Besides new instruction and data types, the FPC adds sixteen registers to the SPUR

architecture. Each of these registers can store one operand in the extended format. Fif

teen of these registers may be used for floating point operands while one is reserved for

the Floating Point Status Word. The FPSW, shown in Figure 2, contains enable bits for

exceptions as well as the rounding mode to be used on each floating point operation. In

addition, the hardware posts information on each completed arithmetic operation, includ

ing the types of the input operands and the type(s) of exceptions that occurred. Keeping

this information in the state of the FPU allows arithmetic exceptions to be handled well

2 See the IEEE standard document for a discussion of number representations.

lnxct.

D
D
D

-
D
-
-

- 6-

• • .., ~ Ill Ill

B:~[~lfi__.___._E I R~___.___,__H x____.____.__lul
0~' ?T~~ I 0....___.__>~ ~~~I~ I

.. Ill 16 0

B:~! ••••••~•I :m~-~!::;H: [~![nl:::r: =il!l·=··=l-==1: m~I':::~H=.I!:Imi·il
T /F - True/Fa.lse bra.ncb line

E - Exception

RM - Rounding Mode

v - Overflow

X - Inexact
Exception Flags

u - Underflow

0 - Opera.nd Trap

OT2 - Oper&nd Type of 2nd opera.nd

OTt - Opera.nd Type of 1st operand

EE - Enable Exception

El - Enable Inexact

Figure 2. SPUR Floating Point Status Word.

after the instruction that created them has finished.

2.3. CPU Interface Requirements

As mentioned above, the SPUR FPU is a tightly coupled co-processor. This means

that the instruction and state of the FPU are accessed in a manner transparent to the

assembly language programmer. The implementation of the hardware interface of the co

processor also involves tight coupling with the SPUR CPU. The interface is synchronous,

with the FPU decoding in parallel each instruction fetched by the CPU to determine

whether that instruction is to be executed by the FPU. The interface control structure

allows the CPU to execute instructions in parallel with FPU arithmetic operations. Con

secutive FPU arithmetic operations are serialized, however these operations may execute

in parallel with FPU load and store operations as well as with CPU instructions. Finally,

on FPU memory operations the CPU actually generates the address for the instruction;

the FPU need only transfer the data itself. Thus, the interface provides enhanced perfor-

mance of co-processor functions at a minimum overhead.

Figure 3 illustrates the signals used to implement the co-processor interface. Because

the CPU fetches instructions from an internal buffer, the instruction currently fetched by

the CPU must be sent on dedicated wires (fpuOPCODE, fpuRSl, fpuRS2, fpuRD) to the

- 7 -

Data Bus

from t~ateh
~

cc data.MayBeValid

Unit datalsValid

':([fpuOPCODE .
~r

'? 7

'? d•t& v olid data Valid
fpuRS1

5

fpuRS2

5

Processor fpuRD Coprocessor
r

(CPU)
5

(FPU)

fpuNewlnstr

1

fpuSuspend

1

fpuExcep

1 L
fpuBusy FPSW

1

fpuBrT_F J
1

Figure 9. Signals for Co-processor Interface.

co-processor. In addition, the CPU sends one line (fpuNewinstr) to indicate the validity of

the instruction sent. The CPU may not assert fpuNewinstr for several reasons, including

a pipeline stall due to consecutive co-processor instructions. Another signal from the CPU

(fpuSuspend) indicates a pipeline stall specifically due to a miss in the processor cache.

This signal not only halts the issue of new FPU instructions but also may prevent

- 8-

instructions from completing.

Because a cache miss may result in a page fault trap, instructions that were issued

after the offending load or store must not change the state of the processor. This require

ment imposes timing constraints on the execution of arithmetic instructions. Each arith

metic instruction must contain at least two execute cycles and a distinct write cycle. This

is because FPU instructions may be suspended and possibly killed during the two execute

cycles just like CPU instructions. This makes the semantics of FPU suspensions and traps

the same as those for the CPU.

\Vhereas the CPU signals are provided for control, the FPU returns status informac

tion for its portion of the interface. The fpuBusy signal, for example, is asserted only

w bile the FPU is executing an arithmetic operation. This signal causes the CPU to stall if

another FPU arithmetic instruction is fetched while it is asserted. The other two status

lines indicate exception and branch conditions for the last completed FPU instruction.

These two lines are attached directly to bits in the FPSW, allowing the support software

to set or clear them directly.

None of the precise timing of the above signals has been given here. A large number

of possible timing sequences arise from the parallel execution of CPU and FPU with the

possibility of traps and/or pipeline suspensions. Also, although the discussion of this

interface has been in terms of the SPUR FPU, the interface is intended for general applic

cation co-processors. A discussion of the timing sequences for this interface as well as the

extensions required for generality are beyond the scope of this paper. For a more com

plete discussion of the SPUR co-processor interface, please see [HaK86].

2.4. Slang Overview

As mentioned above, the hardware description for the SPUR FPU was written m

Slang. The term Slang may refer either to the hardware description language or its

corresponding simulator. Slang the language is actually an extension of Lisp: i.e. a set of

Lisp macros and functions that support constructs for describing hardware. These con

structs include functions for describing the operation of the circuit as well as constructs

for describing its partitioning. Slang the simulator is a set of functions that provide a

purely event driven simulation of a Slang circuit model.

- 9 -

In Slang, a circuit model consists of a collection of objects called nodes. Each node

contains an update function and a list of zero or more nodes grouped into a depends func

tion. In the simulator, a node corresponds to a single event whose value is evaluated by

executing its update function every time one of the nodes listed in its depends function

changes. Thus, a circuit is built from nodes by describing its components using the node

update function and its interconnection network using the depends function.

Because Slang is an extension of Lisp, it has several capabilities not ordinarily found

in hardware description languages. For example, although nodes may evaluate to tri-state

logic values, they are not limited to that type of representation. In fact, a node may con

tain arbitrary Lisp functions in its update clause and have any Lisp data object as its

value. Thus, hardware may be described at different levels in Slang; differing amounts of

detail may exist even in the same circuit description. Users of Slang have the full capabil

ity of the Lisp interpreter for debugging and interaction. Furthermore, they may load

arbitrary Lisp macros or functions along with the hardware description and have those

functions execute as if they were built into Slang. These capabilities make Slang a very

flexible system suited for many different kinds of hardware simulation. As will be seen,

much of this flexibility was used in generating the description of the SPUR FPU.

3. FPU DATAPATH ORGANIZATION

3.1. Overview

As seen in Figure 4, the entire chip is split into separate sections for memory and

arithmetic operations. The load/store portion consists of data packing and multiplexing

logic and contains separate units for load and store operations. The arithmetic logic is

broken up into a section for addition/subtraction of floating point fractions (called the

"fraction box''), a section for fraction multiplication and division (the "multiply/divide

section"), and a section for handling exponent, sign and type fields of operands ("exponent

section" for short). 'Within the arithmetic section, the fraction, exponent, sign and type

datapaths all operate concurrently, exchanging information at several points in the com

putation.

This split between the load/store and arithmetic units is more than physical; the two

section operate concurrently and share only the register file between them. The register

file may be shared without conflict because it is dual ported; two operands may be read or

- 10-

type-l"ffC'bUIA
lr-------

typtbusA I

Type
..

LD/ST
Type reg. file Type data.path

logic type-1'1!11[- bUJB
typtbusB ..

I
Master

I
•lltD-rec-busA

,_ - - -
Sign

o!p-busA ..
LD/ST

Sign reg. file Sign datapath fo- Control

logic •llnl-n!ll'-busB
•tp-busB ..

I
I

I!XJlD-1'1!(-bUJA ~-exp11-busA
- -..

Exponent Exponent Exponent

LD/ST reg. file datapath
I I I

I I I

..._,.-..,_ logic expD-1'1!1[-busB exp11-busB .. I I I

EXtema.l
I I I

Oat& I I I

I3UJ
[_____ ---- --- - ---I I I

I I I - - -----
'-0 .:, ~. I

t'n.e-1'1!1[- busA

fn.e.busA

Fraction Fraction Fraction Multiply /Divide
load/

register add/subtract
store

datapath

logic
file data path

I
fn.e.busB

fn.e. n:s- bus 8 I

4

l

Data flow · - - - - - - - - 1> Control flow

Figure 4. FPU Chip Organization

written simultaneously. Since all reads occur at the beginning of an instruction, there is

never a conflict between reads for stores and reads for arithmetic operations. Although

two writes may occur simultaneously, the load/store and arithmetic sections use different

busses for writing. Also, the A/B busses in the arithmetic data.path are different from the

F
In
s

PU/CPU
terface
lpa.il

I

- 11 -

busses in the register file. This allows the memory and arithmetic sections to operate

independently between data transfers to the register file.

In this section of the paper, the chip datapaths will be analyzed from both the opera

tion and implementation point of view. First the How of operands for each instruction

through the various datapath components will be detailed, outlining the major datapath

components and the interconnections between units. Then, the implementation of each

chip datapath component is fully detailed.

3.2. Instruction Flow

Although many FPU instructions share components of the chip's datapaths, not all

operations use these components in the same way. Table 3 repeats the set of instructions

implemented by the FPU, taxonomizing them according to the path taken by operands

through the chip.

Table 3. SPUR FPU Instruction Classes

Arithmetic Instructions

uses add/subtract uses multiply /divide uses data transfer

datapath only datapath hardware only

FADD FMl.JL FMOV

FSUB FDIV FNEG

CVTS FABS

CVTD
FP_CMP

Memory Instructions

Needs alignment/packing only Needs exponent, type field handling

LD_EXTl. LD_EXT2 LD_DBL,LD_SGL

ST_EXTl, ST_EXT2 ST _DBL.ST _SGL

r-;ote that there are several variations of data routes even within the set of memory and

arithmetic operations. Each of these routes (indicated as instruction subsets) requires a

substantial portion of logic dedicated to their implementation. Within the subsets, how

ever, the differences are primarily in the control of the data path rather than the data path

components themselves. Note that this section provides a complete but not fully detailed

description of instruction sequences, a full description of the exact signals involved is given

in Appendix A of this report.

- 12-

3.2.1. Memory Operations

All load and store operations follow a path going directly between the chip data pins
and the register file via bus A. However, there is a significant difference in the amount of
logic required to process data in extended format versus single or double memory format.
As seen in Figure 5, the extended format data can be field extracted for loads and field
packed for stores since the SPUR extended memory format is isomorphic to the FPU
internal register format. Since only 64 pins are supplied to the FPU, two instructions are
needed to load (or store) an 87 bit extended format value. The LD_EXTI instruction
loads the exponent, sign and type fields, while LD_EXT2 loads the fraction. Finally, both
loads and stores require separate master/slave latches to handle consecutive memory
operations.

Figure 6 illustrates the logic required to convert from the other two SPUR memory
formats to register format and vice versa. 'Whereas the sign bit needs no conversion, the
fraction portion requires alignment to the most significant bit positions of the register file
bus. Also, the bit to the left of the binary point (called the hidden bit) must be made
explicit at this time. Conversion of the biased exponent to internal format involves a
complement and sign extend operation from the proper bit position. Also, the case of a
zero input exponent must be handled specially. This exponent corresponds either to a
zero or to a denormalized number, depending on whether the fraction is zero or not. Flip
ping the LSB is sufficient for denormalized number conversion; a special exponent value
must be produced for the num her zero. An "all ones" detector along with the fraction
and exponent zero detection circuitry are needed to produce the data type bits for the
number. Note that these are not present in single or double memory format. This
conversion is only complete for ordinary, zero and denormalized numbers, however only
these numbers ever will be processed by the arithmetic section. Numbers that are not
handled by the arithmetic section (infinity and NaN) will have their type fields set
correctly.

Single and double memory format stores are simplified greatly because the correct
operand data type field is present already. Only an exponent conversion for zero or
denormalized numbers (as indicated by the data type field) is required. The other data
portions for the number only need to be selected and packed into the proper bit positions.

- 13-

buaA

a) load

extended

register

bus A

L
file

EKtenW

da.t&bua e4 e4

L

actlva.te actlva.te
loa.d master ld_ext2 sl&ve
l&tch l&tch

act!nte act!nte

rtore sl&ve rtore master

l&tch ~~elect l&tches

rt_ext2
I

EJctern&l

d&t& bua e4 -buaA

L
register

:12 (I.SB)

0

select -buaA

rt_extl
9

0 file

b) store 17
-busA

extended

-busA

Figure 5. Extended format memory operations.

a) load

double (single)

Extern&!

da.t& bus

b) store

L

&etlv&te

1
_ store ol&ve

la.tc:h

L

double (single)

11 (8)

o2 (23)

52 (23)

- 14-

Exponent

conversion

Fraction

&lip &lid

zero detect

register

busA

file

2 (23)

1 (40) L

actlv&te
0

~ - - load ola.ve

rtore master

L

64 ~ -busA

I

I

register

I
~_.,,_o _ __,[j~· -+/-...:.u::;:;;.:.;~;.=..'-i'--

'-----c--- v I type-reg-busA ~~ ffi•

.11 (8) &ponent ~ 17 IJ 17
t :--4 II 1 expn-res-busA i

zero
da.ta I
va.lue 1

'---~-~----~: ~~·-+·--~~~--~---

Figure 6. Double/single format memory operations.

3.2.2. Arithmetic Operations

All arithmetic instructions must pass through the exponent, sign and type handling

logic as well some portion of the fraction box to produce a result. The three classes of

- 15-

instructions (add/subtract, multiply/divide and data transfer) differ in the manner and

extent to which they use these datapath components. The largest class of instructions,

consisting of add, subtract, compare and two converts, uses all of the above mentioned

components. The data transfer instructions need only the register read/write logic in

these datapaths to accomplish their tasks. The multiply and divide instructions generate

partial results in a completely dedicated datapath. Even these instructions require the

fraction datapath to produce a final result, however.

3.2.2.1. Add/Subtract

Figure 7 illustrates the sequence of operations for add, subtract, compare and con

vert operations. Although the basic sequence for each datapath is simply a single pass,

the exponent and fraction units must operate concurrently and exchange information. For

adds and subtracts, this sequence begins with the reading and latching of the input vec

tors from the register file. The operand fractions must first be aligned to compensate for

the differences in exponents. This is done by computing the difference in the exponent

datapath and sending the result to a multiplexor and shifter in the fraction datapath.

The operand with the lesser exponent is selected and passed through a right shifter. Each

operand is then fed to the fraction adder/subtractor for generation of the intermediate

result. In parallel with the result calculation, the greater exponent is selected and fed to

the exponent adder/ subtractor.

Once the intermediate result has been computed, it must be rounded and normalized

to form the final result. The normalization step involves both shifting and zero detection

with the shift amount and zero detect signal being sent to the exponent adder/subtractor.

For a non-zero fraction, the result exponent is then computed by adding or subtracting

the greater exponent by the normalizing distance. A special value exponent is inserted

into the destination register for a zero exponent. The fraction zero detect signal is also

sent along with the greater fraction selection signal to the sign determiner. The result

sign is a simple combination of these signals and the input signs; it is computed in parallel

with the result exponent. The result data type value also is generated from the fraction

zero detect signal. Finally, the result exponent is checked for underflow or overflow.

Only after this operation has finished are the various results written back to the register

file.

&4 (LSB)

~~

@:

lhltt
&IDOUDt

17

exponent

difference

logic

17

operand

exception

detect

I
I
~
to

fPSW

/'

- 16-

rraction

ALU

40-

11---1

rn.,.,. bus A I

sign

logic sign
result

tftctlo11

RIO detect

rraction round
and normalize 1

DormaJizfDc

dlst&Doe

result

type

logic

rraction
result

fr&ctloD
RIO detect

exponent

result

Figure 7. Add, subtract, compare and convert operations.

- 17 -

Although the above mentioned datapath flow has been described exclusively in terms

of the add and subtract instructions, very little needs to be added to describe the compare

and convert instructions. The compare instruction behaves exactly like a subtract opera

tion except that the result write is inhibited. Instead the result sign and zero fraction

detect signals are combined to set the proper result condition in the FPSW. The fraction

computation for a convert instruction differs only in that the active operand is routed to

the alignment shifter and shifted by a fixed amount. Since the other operand of a convert

instruction is always zero (3], the rest of the fraction datapath may be used without

modification. The result exponent requires an addition of the fixed alignment amount

along with the adjustment for normalization. This is done with two passes through the

exponent adder /subtractor; the result of the first computation is fed back via bus B to its

left hand input. Finally, the sign and type determining logic are bypassed on a convert

operation since the result sign is always the sign of the active operand.

3.2.2.2. Multiply /Divide

As seen in Figure 8, the flow of operands for the multiply instruction requires the

coordination of the fraction box and the multiply /divide datapath at the beginning and

the end of the operation. The multiplier is able to load two of its input operands directly

from the register file, however it also requires the complement of one of the operands.

This complementation is accomplished by subtracting the input operand from zero using

the fraction box adder/subtractor and sending the result to the multiplier one cycle after

the uncomplemented version.

The actual multiplication step is carried out using an 8-bit version of Booth's algo

rithm. This involves selecting and encoding one byte from the multiplier then using that

byte to select four instances of the multiplicand or its complement. These instances are

added to the previous partial product to form the new partial product for that step. The

two parts of this loop are pipelined; a new byte is selected and encoded while the multipli

cands selected by the previous byte are being accumulated.

To increase performance, the partial product accumulation is done using carry save

addition. Thus, the partial products are encoded as a sum and carry vector during the

3 This is because register Zero (RO) is hardwired to zero.

a) Multiply

b) Divide

Rounding

Logic

neg&tlve
quotient
est!m&te

Multiplier

Byte Select

Booth

Encode (4)

Multiplicand

Select (4)

Estimate

Logic

• 18.

frac.busA

RoUDdlnc bltl

to l'ra.ction box

Accumulator

Logic

frac.busB

frac.busA

II(MSB)

Accumulator

Logic

frac.busB

73

73

muter

Figure 8. Multiply and divide operations.

Rounding bits

Accumulation

B(MSB)

S(MSB)

llli (LSB\ L

PRC
sl&ve

- 19-

entire multiply operation. At the end of the operation, the final sum and carry vector

must be added together to produce the final result. T~ese vectors are therefore sent

directly to the inputs of the fraction box adder/subtractor. From then on, the final result

is formed by addition, rounding and normalization, exactly as it would be for the add

instruction.

Although the divide instruction uses some of the hardware mentioned above, the

sequence of operations is quite different. First, the divisor is loaded directly from the

register file into the same latches occupied by the multiplicand and multiplier on multi

plies. Like the multiplicand, the divisor must be complemented in the fraction box and

sent to the divide unit later. The dividend, however, is loaded into the fraction box input

latch and is held there for one-half cycle. It is then transferred not to the multiplier latch

but to one of the latches that previously held the partial product; a zero is placed in the

other partial product latch.

The main divide loop uses a repeated bit quotient estimation scheme described in

[Tay85]. On a given loop iteration, a two bit estimate is made of the entire quotient.

This estimate is a function of the six most significant bits of the partial remainder (which

for the first step is the dividend) and the four most significant bits of the divisor. Because

the quotient may have been overestimated on a previous iteration, a given estimate may

have the range (-2 < X < 2). The quotient estimate is encoded as a three bit signed

magnitude value, positive and negative estimates are kept in different latches. The quo

tient estimate also selects an instance of the divisor or its complement which will be added

to the previous partial remainder to form a new one. This selection is made such that the

partial remainder (whether positive or negative) always is reduced in magnitude by this

operation. Thus, with each step the precision of the quotient estimate increases and the

partial remainder converges to zero.

At the end of the final quotient estimate step, the negative quotient estimate vector

must be subtracted from the positive quotient estimate vector to obtain the final result.

To preserve accuracy, however, the sign of the final remainder must be included in the

subtraction. To do this, the partial remainder Yectors must be sent to the fraction box

for an addition to form the final remainder. The final remainder itself remains at the out

put of the fraction box adder/subtractor; only its sign is fed back to the divider. Only

after this first addition has taken place can the quotient estimate be sent to the fraction

box. As with the result of a multiply, the final quotient is rounded and normalized before

- 20-

being written to the register file.

The sequence of operations for computing the other data portions (sign, exponent

and type) of the result is exactly the same for multiplies and divides" The exponent com

putation is a two step process similar to that used in the convert instructions. The initial

result is formed by either adding (for multiply) or subtracting (for divide) the two input

exponents. This result is then fed back to the exponent adder/subtractor via bus B and

adjusted by the normalizing distance of the final fraction result. The result sign for both

instructions is the exclusive-OR of the input signs; it is latched early in the operation.

Finally, the data type of the result is computed in the manner already described for the

add and subtract instruction.

3.2.2.3. Data Transfer

The FPU data transfer instructions (fmov, fneg, fabs) have a very simple operation

sequence since only the sign of the input operand is ever modified. The single operand is

read from the register file and latched directly into the destination latches of the various

datapaths. A small piece of logic is placed in the path of the sign bit to compute the

correct sign; the other parts of the operand are latched directly from the bus. The values

of the destination latches are then written back to the register file without further manio

pulation. Thus, no extra datapath hardware is required to implement these instructions"

3.3. Implementation

3.3.1. Fraction Box

The use of the fraction datapath is not limited to the add and subtract instructions;

the unit produces the result fraction for all arithmetic operations. This unit is also used

to complement one of the input operands for the multiply and divide instructions and to

compute the final remainder of a division. To perform these functions, the fraction data

path contains the following four components:

1) Operand binary point alignment

2) Adder/Subtractor

3) Normalization and Rounding

- 21 -

4) Exponent Adjustment

These components correspond to the basic operations required to complete a floating point

add or subtract. The busses and main datapath components are 65 bits wide; in addition

three bits must be maintained separately to ensure correct rounding of the result. Figure

9 gives a detailed view of this unit.

The operand alignment datapath is used exclusively for the add and subtract instruc

tions.. The alignment operation involves routing the fraction with the lesser exponent

through the right side of the datapath and a right shifter. The shift amount and fraction

routing is controlled by the exponent difference of the two operands. This right shift gen

erates the rounding bits for the add and subtract instructions. The two most significant

bits shifted out of the operand become the guard (G) and round (R) rounding bits. The

rightmost round bit is generated by ORing the rest of the bits that were shifted out; it is

called the sticky (S) bit. Because the bits shifted out of the operand can be condensed,

the aligning shifter need only handle a shift amount of up to 66 bits. Also, the exponent

shift amount signals are condensed into a 7 bit shift vector and a single signal for all shift

amounts greater than 127.

The aligned fractions are latched at the input to the main adder/subtractor in phil

of the second execute cycle. Since phi 1 of the first execute cycle is dedicated to reading

the input operands from the register file, a little more than two phases are allocated for

operand alignment. The exponent box produces the control signals for alignment; the

shifter must wait one phase for these results. Thus, the actual fraction shifting is done in

phi3 and phi4 of the first execute cycle.

At this point the operands are ready for the actual addition or subtraction operation.

Note that the operands generated by multiplication and division have the same magni

tude, hence they are multiplexed into the unit directly at this point. Subtraction in this

unit is performed by complementing the left operand and adding it to the right operand.

Since the three rounding bits are always associated with the right operand, the size of the

main adder/subtractor is reduced because the rounding bits do not participate in the sub

traction.

Since both addition and subtraction are performed, the output of this section is a 69

bit two's complement value. The value consists of a sign bit, two bits to the left of the

binary point, 63 bits to the right of the binary point and three rounding bits. The result

1) ctJi. MDresult~ puslve

2) ctJi.pt.e.fllLC!ntenned-
t'nl.cBusB

3) fra.c. right-AS

4) fra.c.roundbtt..AS

li) G,R,S bit L---~-:--

ctJi.AS/MD

ctJi.l&teh-fr&cadde!' in

ctJi.fr&cadde!'op

1)

7) Shll'ter bitt R1, L1

8) frac.roundblt~MD

Q) fra.c.roundblt~MD

1 0) ctJi. MDcycle-puslve

11) ctJi.wrlte-a.rlthretultt

fra.c.Sb.ltt- GTl

- 22-

RoundJnc &nd

Nol'tlll.llntion

fra.c.BusB

12) expn-ce128

13) expD-tlwx&

A

12

0

2)

ctJi.la.tch- remslgn

14) fr&c.ID&in.ln""e&nYOUt

16) fra.c. nonMlit-ehll'ter

111) fra.c. nonMlit-enooder

17) HJ&h order shll'ter bits

18) fra.c. zerodet-l&tch

ctJi.la.tch-mal est 11)

Figure 9. Detailed view of fraction box

- 23-

is immediately returned to positive magnitude form by exclusive-ORing all of the 68 right

most bits with the intermediate sign bit. Thus, the final output of this unit is a 68 bit

positive number. The number is correct if the result of the adder/subtracter was positive;

otherwise the value must be incremented to finish complementing it. The entire

addition/subtraction operation is estimated to take two clock phases.

The basic operations that remain to be performed by this unit include rounding, nor

malization and incrementing. Normalization here means bringing the uppermost one in

the number to the bit position just to the left of the binary point. This requires that the

value be shifted right by one or left by an amount ranging from zero to 66 bits. Since

rounding must be done to the normalized number, it would seem that normalization

would be the first thing to do in this section. That is however NOT correct because the

number may still need to be incremented to finish the complementation; this could in turn

change the normalization shift amount [4]. Furthermore, the rounding may also require

that the number be incremented even if it was originally positive. Given these con

straints, the primary design goals for this section of the datapath are to use one incre

menter for both rounding and complementation and to make only one adjustment to the

exponent.

The solution that satisfies the above design criteria exploits the fact that different

rounding and normalizing actions are taken based on the value of the input. Only those

numbers that require a shift amount of zero or one (left or right) need to be rounded.

Although it should be clear that shifting left by more than two clears the rounding bits,

the case of shifting left by two is not obvious. Numbers in that range (0.25 < x < 0.5)

must have resulted from a subtraction where the lesser operand was shifted right by no

more than one. Hence all significant bits are shifted out of the rounding bits by the nor

malization shift left of two. These numbers are therefore treated differently from those

numbers that require a normalizing left shift of greater than one.

As seen in Figure 10, the input to this section is first tested to see if the required

shift amount for normalization is right by one (Rl), zero (Pass), left by one (Ll) or left by

greater than one (GTl). Numbers with shift amount greater than one are passed without

shifting to the incrementer; these numbers are incremented only for complementation.

4 To see this, considering incrementing 0.11111.

~h order ~loo blti

~Sb.lft-R1

~Shlft-Grl

13

C ~S/A·expo

1) ~plar!NC-output

2) frac-p!a.-L-output

3) ~pia-Input

4) ~rouodoonn

li) ~prelnc-lo

!I) ~ma.lnioc-ctrl

7) ~prelnc-canyout

8

- 24-

~ma.lnioc-out

~at:.lotermed

+
~at:.rouodblti

~prelnc-out

~rouodmode

8) ~lll&bloc-canyout

Q) High order !oe bit

10) ~Shift-Pass

11) tn.c_lot_l

12) tn.c_lot_2

13) ~oormdlst-shltter

U) tn.c.lot.li

11i) round _pass

Figure 10. Details of fraction rounding and normalization.

Otherwise, the num her is normalized immediately and only the uppermost 63 bits of this

result are sent to the incrementer; the four least significant bits (called the L, G, R, and S

bits) are sent to the rounding pia. The pia is also sent the intermediate sign of the

number so that the need for a complementation increment can be taken into account.

This pia returns the new value of the L bit, increments the uppermost 63 bits if necessary

and clears the rounding bits. The uppermost 63 bits of any number will never be incre

mented both for complementation and for rounding, thus only one incrementer is needed.

Incrementer overflow is handled by ORing the carry output of the incrementer into the

most significant output bit and by modifying the exponent adjustment amount.

- 25-

After the incrementing is complete, the number consists of at most 67 bits and is

ready for the final normalization step. The number is passed to a priority encoder; this

will generate a left shift amount ranging from zero to 66. The encoder generates the shift

amount in both a "one-hot" encoding that controls the shifter and a binary encoding that

is used to adjust the result exponent. Also, the priority encoder must detect an all zero

input and latch that signal for the exponent and type datapaths. The normalizing shifter

generates the final result for the fraction unit. Currently, the entire rounding and nor

malization process is allocated only two phases. This estimate is probably too optimistic

from a layout implementation point of view.

In addition to generating the final result, the normalizing unit must also adjust the

result exponent to reflect all normalization that was done. Exponent adjustment informa

tion comes from three places of this section, the initial shifter (for the Rl, Pass and Ll

cases), the incrementer overflow or the priority encoder. The first two sources are mutu

ally exclusive of the third; the correct exponent adjustment will come from the priority

encoder only in the case where the shift amount before the increment is greater than one.

Thus, the incrementer overflow and initial normalization information is gathered into a

single shift amount by combinational logic. The shift GTl signal is then used to choose

between that shift amount and the value from the priority encoder. The results of this

section consist of the magnitude of the shift amount and a signal that indicates whether to

add or subtract that value from the other exponent.

3.3.2. Multiplier and Divider

As mentioned before, the floating point unit uses a version of Booth's algorithm for

multiplication and a repeated quotient estimation scheme for division. Although the prin

ciples of these algorithms are different, each requires a loop where bits from one operand

(the multiplier or divisor) are repeatedly selected to control the selection of instances of

the other operand (multiplicand or dividend) or its complement. On each iteration these

operands are added to the previous partial results to form the new partial results.

Because of the similarity between the algorithms, the entire accumulator loop (consisting

of operand selection multiplexors, carry save adder tree and partial result latches) is com

mon to both the multiplier and divider. This sharing of hardware for multiplication and

division was absolutely necessary to meet the area and performance goals for this data

path section.

- 26-

3.3.2.1. Multiplier

For multiplication, the operand selection portion of the loop mentioned above con

sumes eight multiplier bits per iteration. As seen in Figure 11, this requires four sets of

Booth encoders and multiplicand selectors, each of which consumes two multiplier bits.

To feed these encoders and selectors, each iteration requires an entire byte of the multi

plier plus the high order bit from the previous byte for processing. The nine bits are

arranged into four groups of three lines, with the high order bit of each group forming the

low order bit of the next group. These lines are then recoded into four groups where each

group contains four bits in a "one hot" encoding. Each group then controls a multiplexor

that selects one of four versions of the multiplicand; these being the multiplicand or its

complement taken as is or shifted left by one. Since each of these partial results is gen

erated from two multiplier bits, the multiplicand in each multiplexor in the group is

shifted left by two bits from its predecessor.

The outputs of the four multiplexors are then added to the two results of the previ

ous step to form two new results. A tree of four carry-save adder rows is required for this

task. Since four two bit partial results are generated at once, the carry-save adders must

be 73 bits wide. Although four rows of carry-save adders are required, the order of addi

tion has been arranged so that the critical path through the tree contains only three

adders. This is accomplished by placing the six input operands into two groups of three

and adding them in parallel. The four vectors that result are then accumulated in

sequence to generate the two final result vectors. Once the result vectors have been gen

erated, they are latched into the master of the partial product accumulator latch. A new

loop begins on the next phase when the slave result latches are loaded.

Vp to now, no mention has been made of the timing of the multiply loop. Since the

generation of multiplicands and the accumulation of partial product vectors are indepen

dent, these functions are pipelined. As seen in Figure 12 the shifting and rounding of the

partial product vectors is done in parallel with multiplicand selection. Each pipelined

function is estimated to take two clock phases, with the master and slave cycles occurring

on even and odd clock phases respectively. The entire accumulation process requires 8.5

loops. The extra half loop in the multiplication is required to finish the evaluation of the

leftmost bit of the multiplier. The partial product master is latched on even phases so

that the result of the multiplication (from the last half loop) may be sent to the fraction

box on the following phase.

- 27-

f> frac.busA

f> frac.busB

etrl-la.teh-eomp~

etrl-la.teb-~ md-IDXI-
I L md-mpl'

L 1a.te.h L 1a.te.h

I y> ?'> I md-eomp~

J, J, 1a.te.h J,
1)

\s~ \ ~~~I
2) Byte Seleet

L1 Bootb.Rtxl I

1 ..---J].-1- 3) Js il ~s 113

S.extl L
4)

4X1 Mux

~
md-mximux-

731 }-L {1,4} 4X1 Mux Mux

J T

l 4X1 ~Wl l
J ;:::~ !

L ;
4X1 .iu 1*----o

J '-- md-qboxpla.

J, mux-out

CSA I md-at&{ 1,4}

,~, L
tum

*""" Quotient
md-Pf'S.
sla.ve I PLA CSA md-01&{1,4}

* e&ny
md-PPC-

I sla.ve - --z.. CSA 5) 8(M>B)

** 87 87
CSA I / +

!73 ¥73 I j\
7)

~ L I rl L
8)

1 1

etrl-la.teh-~

,----

DE.

CJt.

T etrl-lnc-se
etrl-cle&Nelmrb

lmrb

1
4 (M>B)

etrl-la.teb-Boothrcd

md-qboxpla.-

dsrtn

l To quotient

8)
accumulation logic

1) md-selmrb
2) md- booth.res ult-mpy

3) md-mximux- In
4) md- booth.res
5) md-qboxpla.-
8) md-qboxpla.-

ult-la.tch
dtvln
quotient-out

7) etrl-la.tch-PPS/Cma.ster
et rl-mulop Js~ I ..\ s~

/RB/L2/-
J3 md-qboX&dder md-qboX&dder 8) etrl-cle&r-PPS /Cma.ster

PSsla.ve-ln
PPS/Oila.ve

master

I RB/L2 lett right 9) etrl-mux-P /'1) (LS~)
frac.bus: l 10) etrl-la.teh-

118 118(M>8) 8(M>B) 11) md-Pf'S.

~. .. ' ",/ 1
M (LSB) 12) md-PPC-

/4 (LS l I
master

.1.
10)

L ~r-H L I
I I

I

11) 12)

To multiplier rounding accumulation

Figure 11. Multiply/Divide accumulator loop.

- 28-

Latch MCD.MPR Latch MCD Latch Pf'S/PPC

Encode byte 0 Releue byte 0 muter

Byte 0

Latch Pf'S/PPC L&tch Pf'S/PPC

Encode byte 1 1la.ve muter

Byte 1

Releue byte 1

Encode byte 2

Byte 2

Latch Pf'S/PPC L&tch Pf'S/PPC

Encode byte 7 sla.ve muter

Byte 7

Relea.se byte 7
L&tch Pf'S/PPC L&tch Pf'S/PPC G&te l'l!llulte to

Encode byte 8 sla.ve master fr.lctlon box.

Byte 8
Relea.se byte 8

Figure 12. Timing of multiplier pipeline.

Note that the partial product vectors must be shifted to the right by eight bits

before they can be returned to the carry-save adder for the next loop. The eight bits

shifted out of each result vector are the least significant bits; these must be condensed to

form the rounding bits for the operation. This is done using the adder and OR gate

shown in Figure 13. On each iteration, the "partial" sticky bit is fed back to the rounding

adder while the carry output of the last addition forms the least significant bit of the pare

tial carry for the next iteration.

On the final half cycle of the multiply, this circuit must furnish the rounding bits to

the fraction box. The mapping of these bits is complicated by the fact that the leftmost

bit of the rounding adder actually belongs in the L (bit 63) position of the fraction unit

datapath, not in the rounding bits. Thus, the second from leftmost position of the adder

corresponds to the guard bit of the fraction unit. Furthermore, the multiply unit does

NOT produce a round (R) bit; using bit five from the adder is not correct. Instead, a zero

is placed in the round position and the rightmost six bits of the adder are ORed with the

previous value of the sticky bit to form the final sticky bit. Finally, the carry output

84(

md-Ff'C. md- f'PS. rsult
rsult

- 29-

md-xtrabll.a
canyout

md-roundadder
Pf'Cla.tch

7(M5B) 8

t'ra.c- busS

t'ra.c- busA

md-roundadder
PPSI&tch

Figure 19. Rounding bit accumulation in multiplier.

ctrl-la.teh-PPS/C.I& ve

To fraction

box

from bit position SIX of this adder must be sent to the fraction box to form the carry

input of the final result accumulation.

3.3.2.2. Divider

As denoted in Figure 11 the divide instruction actually does not require much addi

tional hardware beyond that needed for the multiply instruction. As mentioned previ

ously, the divider uses the same accumulator/selector loop as the multiplier. Since only

two quotient bits are generated on each loop, only the topmost of the four selection multi

plexors is used for divisor selection. Only a slight modification is needed to use the partial

product latches as partial remainder latches; they are loaded with the dividend and zero

respectively at the beginning of the operation. Also, the new partial remainder vectors

are shifted left by two bits before taking part in the next quotient estimation. Thus, the

Rounding

Bits

- 30-

divider loop on each iteration consumes two bits of the partial remainder and generates

two bits of quotient.

Only the quotient estimate hardware is umque to the division instruction. This

hardware consists of the quotient estimation pia and an eight bit adder for the most

significant bits of the partial remainder. The topmost six bits of the adder result consti

tute an estimate of the entire partial remainder at each step. Doing eight bits of addition

rather than just six significantly increases the precision of this estimate and does not

increase execution time. The remainder estimate is then fed along with the four most

significant divisor bits into the quotient estimation box. The pla output is a number in

the range (-2 <== X <== 2) encoded into sign magnitude format to be stored in the quo

tient estimate latches. This value must also be decoded into a "one hot" format to be

used in the divisor selection unit.

Unlike the multiply instruction, the divider loop is not pipelined; the quotient estima

tor and dividend accumulator operate as a single piece of logic. Two full clock phases are

required to traverse the entire loop. The loops are controlled by the partial product mas

ter latch and therefore are timed to end on even clock phases. Each quotient estimate

vector is a 68 bit quantity consisting of 65 result bits plus three rounding bits for each

estimate. Thus 34 iterations of the divider loop are required to generate the full quotient

vectors.

Note that the loop count figure shown above does not take into account the time

required to convert the quotient estimate vectors into the final result. As mentioned pre

viously, a two step process is required to obtain the final quotient. First, the two 65 bit

final remainder vectors are sent to the fraction datapath to be subtracted in order to find

the sign of the remainder. Then the quotient estimate vectors are sent to the fraction box

to be subtracted. As seen in Figure 14, one cannot send all 68 bits of both quotient vec

tors to the fraction unit; the unit expects rounding bits from one operand only. Rather

than enlarge the fraction box adderfsubtractor for this case, the three rounding bits are

subtracted before being sent to the fraction unit. The rounding bits result should also be

decremented if the sign of the final remainder was negative. This is accomplished by

using a two"s complement adder for the subtraction and the complement of the partial

remainder sign bit as the carry input. Thus, to compute the final result the fraction unit

is sent two 65 bit operands, the three rounding bits and the carry output of the three bit

subtractor. The carry output of the three bit subtractor becomes the carry input of the

md-poect

dart 2

L

result

et~g&te

quotlen~

fn.cBus

CLR

Sb.ltt L2

md-posquotlent
egl&t.eh

md-ner<t
result

- 31 -

md-qboxpla.

quotlent.out

CLR
etri-clear- uotlents

et~sb.lt't- uotlenta
L Sb.ltt L2

ell
md- nerquotlent
latch

3 (LSB) 3 (LSB)

md- roundblt.-dtvo

tnc-busB

tnc-busA

Figure 14. Quotient bit accumulation in divider.

fraction unit adder.

3.3.3. Exponent Datapath

The exponent datapath lies on the critical path of all FPU arithmetic instructions

except for the data transfer operations. Each instruction requires the formulation of a

preliminary exponent; each instruction except for compare requires that the preliminary

exponent be adjusted for normalization to form the final result exponent. This final result

must be checked for underflow or overflow. Also, the add and subtract instructions

require an indication of the operand with the greater exponent as well as the exact

amount of the exponent difference for operand alignment. As showu in Figure 15, each of

these functions is realized with separate arithmetic components known as the difference

- 32-

and result components.

EXPONENT BOX· 1/D/88 • CAD.FPU

expn-BusA

-=17

=17

6
ex n-dif!A B

expn-BitA·tmp
ct~AS/MD

ct~ lateb-expnadder- inlet't

1) expn_sau_dltl'_A_B

2) expn_sau_ctrl

3) expo_BitA

4) expn_ge128

6) expo_sb&n1.

!!) expo_shll't _resuh

7) ctrl_cyde1_1

8) ctrl_\-ID _AS

g) ctrl_lateh_expnadder_lnrlght

10) expo_mpas

11) ctrl.dlvop

12) t'rac_S_A_expn

13) expn_S_A_ctri <! =17
14) expn_c:anyin

=17

IL
I

Figure 15. Details of exponent box.

expn-BusB

~normdlst
-=11
"f

7

-8-

g

10

13

ct~ latch-expndest

expn-dest

Note that although exponent operands are 17 bits long, each of the elements in the data

path are 18 bits in length.

As mentioned above, the exponent difference section must find the greater of the two

operand exponents and compute the positive difference between them. Since these opera

tions must be done in little more than one phase, this section is implemented using two

parallel subtractors and selection logic. The exponent difference is sent out in two forms;

- 33-

a 7 bit positive difference vector for differences from 0 to 127 and a signal to indicate

whether the difference is 128 or more. Also, a signal indicating the greater exponent is

latched and sent to the fraction box.

The result section consists of a single adderfsubtractor with control logic. This data

path is itself straightforward, however there are subtleties in its use. For instance, recall

that all exponents are converted to 17 bit two's complement numbers with a bias of -1;

this bias must be taken into account when computing intermediate results. Since the bias

is now only -1, one can keep the correct bias for intermediate results by manipulating the

carry input of the two's complement add or subtract. To see this, recall that the result

bias (without adjustment) of an add operation would be -1 + -1 = -2, while for a subtract

it would be -1 - (-1) = 0. Note that in the exponent difference section, the result bias of

the subtraction (zero) is correct; the true difference between the exponents is needed.

In the add and subtract instructions the result exponent can be computed in one

ALU step by adjusting the greater exponent by the normalizing distance. However the

multiply and divide instructions as well the two converts require an additional add or sub

tract to generate a preliminary result. That result is fed back to the adder/subtractor

using the datapath busses and input latches for the final adjustment. For all instructions,

a special value must be used for the final result exponent if the result fraction is zero.

Each pass through the exponent ALU requires one clock phase.

Finally, logic must be added to the result latch to detect overflowed and underflowed

exponents. These signals help form the result exception bits for the instruction. The

detection logic adds almost an extra phase to the result exponent computation. Because

the exponent is the last data portion computed, result exception detect adds to the execu

tion time of any instruction that requires it.

3.3.4. Sign and Type Determination

The sign determination unit consists of combinational logic that must correctly find

the sign of the result of all arithmetic operations. Fortunately, the equations for deter

mining the result sign of the various instructions are relatively straightforward. In fact,

the result sign determination for the convert and data transfer operations is done immedi

ately after reading the input sign from the register file by transferring the input sign to

the result sign late h.

- 34-

The result s1gn for multiplies and divides is not much more difficult; it is the

exclusive-or of the operand signs. For the instructions add and subtract, the result sign is

a function of both the operand signs and their relative magnitudes. The relative magni

tudes of the operands are determined from the magnitudes of their exponents, the sign of

the fraction's intermediate result and the zero fraction detect signal from the fraction box.

The arrival of these signals from the fraction box determines the timing of this unit. For

simplicity, all result signs not computed immediately (including multiply/divide) are

latched in phi2 of the third execute cycle.

Like the sign determiner, the type datapath consists primarily of combinational logic.

Besides determining the result data type of all arithmetic operations, this datapath also

contains the logic to generate the new FPSW for each operation. Note that the result

data type is not a function of the operand types; instead it is formed from the fraction

box zero detect signal. The operand types go directly into the new FPSW and also pass

through logic to determine whether the operand will be correctly handled by the

hardware. An exception is posted in the FPSW and the result write is cancelled if either

of the operands are of illegal type. The signals for the other exception and compare bits

in the FPSW come from the fraction and exponent boxes. Still more logic, however, is

required to gather these signals and ensure that the new FPSW is written correctly.

Because the result exception timing is critical, part of this evaluation time will be over

lapped with the final result write.

3.3.5. Load/Store Datapath and Register File

Whereas all of the above mentioned sections are devoted to arithmetic operations,

only one datapath each is needed for all load and store instructions. Data flows directly

from the chip data pins to the register file in the load datapath; flow is in the opposite

direction for stores. Access to both the register file and data pins is controlled by placing

latches at each end of both datapaths. The latches also allow consecutive memory

instructions to execute. Although much of the logic for the load and store datapaths is

similar, the two datapaths must be kept entirely separate. This is because the timing of a

load operation immediately followed by a store causes the two datapaths to be active

simultaneously. Further details on the timing of these instructions is given in the section

on the memory control unit.

- 35-

The function of the load datapath has already been described in the section on

instruction execution. The logic required to perform this function, illustrated in Figure

16, is implemented in the simplest manner possible.

External 114
I fl>u-DATApln

Data Pads !
ctri- JoadJ.atcb. master L

1) ctri-pte-ext•·•l3ul 1
l'l!g· Jo&dlatc:h-

2) ctn.,a.t&- loadla.tcb-•Jcnl3ul master
ctri- Joadla.tcb-sla. ve J L

l
1<!12:62>

reg-Joadla.tc:bo

I <!12:60> 1la.ve

1<!12:411>

Is I ext Is I ext I Zdet I I Zdet I
~~lexpo- reg·Silexpo- reg-dblexpo- reg·qlexpo- <Sl:O>

1
lnltva.l zerodet zerodet

17 p I <54:32>

1 1 1'"1!11:· Joadla.tc:bo•ln va.1
~ /' J ctri-epecselect- Joa.d '~/ ~YI

reg-
~LSB)

reg-expnspec-
,<.311:32> IJ(MSB)

expll.lpec- / zerodet reg- Joa.dla.tc:bo
lnltva.l !&ernE spid'n.c

- /"' ~la.tc:bo
~"y !"lli-Sped'!'ae- zerodet fo-- reg· extexpn

Joadla.tcl

1117 - M ext type
reg-

/MSB) loadla.tch-
reg·loadla.tch- extfracva.l
expnspec ~\

I Logic I 1)

reg-loa.dla.tch-~ w ur tJ ~7
types pee

ctri-~~:a.t&-*spec-*Bus !

lis
2)

p ex OD-1'"1!11:· bus A

f tV'[)o&-l'"l!ll:·busA I To

f"' frac- reg· busA I Reg

1 1

Figure 16. Datapath for load instructions.

Each portion (fraction, exponent, s1gn and type) of the input data flows through a

separate logic path. Furthermore, separate nodes implement the different paths that a

given data portion will take for different types of loads. These paths are brought together

by multiplexors controlled by signals indicating the exact type of load being executed.

Also, the datapath logic nodes currently extend from the input slave latch and gate

directly onto the register file busses. While this particular description style simplifies

1ster

- 36-

debugging, it does not necessary reflect the structure of the layout implementation.

The store datapath is organized differently, using separate input latches for each

data portion. As illustrated in Figure 17, the datapath logic is contained between the

input latches and the external data bus.

•lgn- rec- billA

from register file

co:pn-rec·blliA

17

rec-expnstor&
dblv&l

t~rec·blliA

rec-trt.orela.tch
typemaster

L

114

rec-trt.orela.tch
tracmuter

rec-ex pnstor&
lei'Odet

114

sl&ve

rec-compooeoext 1

External

Data Pads

Figure 17. Datapath for store instructions.

ctrl-storel&tch~

sl&ve

On store instructions, conversiOn is needed only for the exponent; this conversiOn is the

inverse of the conversion in the load datapath. Implementing the rest of the packing logic

requires only a little more than one node per type of store instruction. Finally, for simpli

city the external data pins are implemented in Slang not as a bus but as a latch with a

multiplexor.

- 37-

The register file is a high level bi-directional component, making it the most difficult

datapath component to implement in Slang. Separate Slang nodes must be used for each

portion (fraction, exponent, sign and type) of the register file. Each node itself is imple

mented as a generalized Lisp array containing the particular type operand in internal for

mat. The lack of bi-directional Slang nodes is overcome by having the register file nodes

themselves active only on writes. An intermediate latch is used to hold the data value

that is read or written on any operation. These latches are multiplexed so that data for

both reads and writes may go through them. Separate intermediate latches are needed to

handle transactions on each of the two register file busses.

4. FPU CONTROL ORGANIZATION

4.1. Introduction and Overview

The objectives of the FPU chip control are to sequence through the memory and

arithmetic instructions handled by the chip and to interface with the SPUR central pro

cessor. The instruction sequences are very simple, and the mechanics of the CPU inter

face are simplified by using the same four phase clock for both CPU and FPU. Complex

ity is introduced, however, by the requirements of the CPU-FPU interface and by chip

performance criteria. For example, whereas FPU arithmetic operations are sequenced

serially, the memory operations may be issued at the rate of one per machine cycle. Also,

FPU memory and arithmetic instructions may proceed in parallel. Finally, all· FPU

instructions may be suspended or trapped (killed) during their execution. These con

straints are the primary determinants of the FPU control structure.

An overview of the control section for the FPU chip is shown in Figure 18. This sec

tion consists of separate control units for the memory and arithmetic instructions; both

these units are driven by the instruction decoder unit. Note that although the memory

and arithmetic control units both rely on the instruction decoder, they also receive control

information directly from the FPU-CPU interface. The two kinds of FPU instructions use

separate control units so that they may operate in parallel and so that different implemen

tation structures may be used to meet the differing requirements of the two units.

By far the simplest portion of the control is the decoder unit. The decoder unit is

always active, monitoring the co-processor instruction bus and the fpuNewlnstr signal.

- 38-

!1JU-B1W'II
Result
'Write

Arithmetic: Cycle count To Arithmetic
To repter ftle ala.w
read control Control

r
Cycle count Unit Datapath

Unit master

Decoded artthmltie 110 Decoded

opoode Opoode

r ... trvt!tion au. 122

Instruction
ct~ 1'RA.F'Recvd

Decoder
Jpu-Newl,..tr

Decoded IDI!ID>ey' /16

opoode Ellecute

Cycle

Memory To Memory

Control Mem>zy Unit Datapath
Cycle

Unit
Write
Cycle

fpu-Supend

NOTE: ltalicB denote signals for FPU-CPU interface.

Figure 18. Overview of FPU Control.

On every machine cycle this unit must determine whether a valid FPU instruction has

been issued and if so send a decoded version of that instruction to the appropriate control

section. It also decodes the special trap opcode directly into a signal that is sent to the

other two control units. In all other cases (non-FPC opcode, suspension etc.) the unit

takes no action.

Since FPU memory operations are issued once per machine cycle, the memory unit

control receives input from the instruction decoder on every cycle. These memory opera

tions are considered to be part of the CPU pipeline, furthermore the CPU participates in

these operations by supplying the memory address. For these reasons, the timing of FPU

memory operations matches that of the CPU; the memory control unit also uses an

opcode pipeline for its control structure. Each station in the pipeline is active for exactly

- 39-

one machine cycle; the stations themselves contain a decoded version of the input opcode

and the value of the destination register for load instructions. The contents of the pipe

line stations control the activities of the load/store datapath directly. Under ordinary

conditions this pipeline operates continuously; the suspend and trap signals cause the pipe

line to stall or clear respectively.

\Vhereas the memory control unit handles a pipeline of fixed execution time instruc

tions, the arithmetic control unit only needs to sequence a single instruction. Although

the instruction sequences themselves are very simple, the instructions have varying execu

tion time and may be suspended or trapped during a portion of their execution. The

structure of this unit therefore consists of a simple machine cycle counter with a separate

state machine for handling suspend and trap conditions. This division of control simplifies

the unit and also allows arithmetic instructions that have been suspended to actually con

tinue execution in the FPU datapath. This is done by letting the cycle counter continue

during the suspension while delaying the result write using the supervisory state machine.

Also, the state machine can take input directly from the instruction decoder stage without

interfering with the operation of the chip datapaths. This allows the write cycle of the

active FPU instruction to be overlapped with the decoding of the next instruction.

4:.2. Details of Operations

4:.2.1. Operation Timing

Although the memory and arithmetic control machines mentioned above are quite

different in structure, they use the same operation timing scheme. The timing of control

machine transitions is dictated by the fact that the fpuSuspend signal arrives in the fourth

phase (phi4) of a given cycle. For this reason the opcode pipeline and arithmetic state

machine cannot change state until phil of the following cycle. Control signals that

depend on this state will not be stable until the next phase; this leaves the problem of how

to control events that must occur on phi 1 of a cycle. The solution is to use master/ slave

latches for all state holders and to generate appropriately timed control signals. On a

given cycle, all events occurring in phi2 are controlled by the master latch while the slave

is loaded. The slave latch controls signals for all other phases, including phil of the fol

lowing cycle. This provides an effective solution for all execution cycles except the very

first. As shall be seen, events in phil of the first execution cycle is controlled directly by

- 40-

the instruction decoder logic.

4.2.2. Instruction Decoder

The instruction decode unit must monitor the external instruction bus on every cycle

and begin the execution of the instructions intended for the FPU. Since the instruction

bus changes on phi3, the decoder has little more than one phase (until phil of the next

cycle) to perform these functions. As seen in Figure 19, this unit consists of a simple

opcode decoding filter with logic to decide whether to accept the decoded instruction.

phl4

(Not phl4)

Jpu-Su penJ.
Jpu-RS2

I L
~

L

l'pu- RS:!pin

ctrl-l'puSusoond

1) Decoded utthmotic

opeod..,

(ctrl-ID!t-a.ddop ..•

ctrl- IDlt-cmpop)

from CPU

Jpu-RSl Jpu-RD Jpu-Opco.U

~6 llli

L I
1------_,11 L I

L-----..---'1

fpu-RS1pin
l'pu-RDpiD

ctrl

storoop

LlO

Decoded m.rmp

l'pu-Of'CODEpiD

Opcode

Decoder

ctrl-

L

a.nd composites 1)
Tra.pRecvd

To ~er file

control

(ct rl- init-ldext 1 I
ctrl-storoop) ct n-k:l 1st-

opn-ector 10 I

l I
LOAD/CLR

1
·

I
I

~ I
L I

~16
ctrl-utth-

ctrl-decode opn-ector
st&te

To a.rithops To all To meiiXJ ps

control control control unlts.

Figure 19. Details of Instruction Decoder C nit.

Jpu-Newlut~

ph.l3

l'pu- NEWINSTRpiD

phl4

The logic to begin the execution of an instruction must run in parallel with the opcode

- 41 -

decoder in order for the unit to meet its strict performance criteria.

To further increase performance, the decoder logic itself attaches directly to the

opcode pins latch and takes no other signals as input. The decoding logic generates a trap

received signal directly from the appropriate opcode; this allows that signal to take effect

immediately. In addition, it genetates two vectors of decoded opcode signals; one each to

represent the type of memory or arithmetic operation encountered. These vectors will

contain no asserted signals if a trap or non-FPU opcode is encountered. The fpuNewinstr

signal directly controls the latching of the instruction bus; no other signal is needed.

The conditions under which a decoded FPU instruction will begin execution depend

upon whether it is a memory or arithmetic operation. A memory operation will be

accepted only if the FPU is not suspended (i.e. fpuSuspend disasserted). On the other

hand, an arithmetic operation begins whenever the arithmetic unit is not busy (fpuBusy

disasserted). Both machines will simply refuse to latch the output of the opcode decoder

if the specified conditions are not met.

In addition to initializing the control machines, the decoder unit must control the

reading of the regi:lter file to begin an instruction successfully. Because register file decod

ing and reading take place in phil, the decoder unit must send the proper register

specifier to the file in phi4. Note that while the store operation reads from the destination

register number, all arithmetic operations read from the two source registers. Thus, at

least a partial opcode decoding is required to send the correct register specifier. The

actual register file read takes place regardless of whether the instruction that was decoded

is ready to execute. Rather than inhibiting the read operation itself. the arithmetic con

trol unit will not connect its busses to the register file busses if the arithmetic datapath is

busy. The memory unit behaves similarly by refusing to latch the output of the register

file if the instruction pipeline is suspended. Register file reads are inhibited this way

because it is easier from a circuit implementation point of view to control a few latches

and gates than the entire register file.

4:.2.3. Memory Control Machine

Figure 20 illustrates the four stage memory control unit pipeline along with the exact

format of the contents of each opcode latch. Each of the pipeline latches is clearable, in

addition the second and third stages use master /slave latches to allow feedback for each

- 42-

(rom Instruction

Decoder

ctrl-deoode-state
ctrl-TR.APRecvd ctrl-fpuSUIOODd

1116

_l
~/ ~

CLR
L

phil -i CLK

ctrl-LD/ST2·&tate-muter

To Store Logic a.nd

ph.l2 L

ctri-LD/ST2-trt.&te-•l&ve
Da.ta. Pa.ds Control

,16

l
i ~/ ~

CLR
L

phil -i CLK
ctrl-MemCycle-st&te-muter

phl2 L j
To Loa.d Logic

/5
ctrl-MemCycl&-sta.te-sla ve

Control

CLR

phil ----1 CLK
L

To Register File
15 ctri- LD /STWrlte-state

I
Write Control

Figure 20. Opcode Pipeline for Memory Operations.

stage. This feedback allows the execute and memory cycles of the pipeline to be repeated

on a cache miss on either CPU or FPU memory operations. Also, each of the stages is

cleared whenever a trap is signalled. The last stage (for the write cycle) is different in

- 43-

that it may neither be trapped nor suspended. It takes either the output of the previous

stage or a zero if the previous stage is suspended.

Because the CPU handles addressing for all FPU memory operations, load operations

do not require any action until the third (memory) cycle. The external data latch is

loaded on phi3 whenever the control pipeline indicates a load operation is present. If a

cache miss occurs, the fpuSuspend signal will keep the control information for the load in

the memory stage latch and zero out the write stage latch. In this event, the contents of

the external data latch are not passed on through the load logic and are overwritten on

the next cycle. Thus, the load operation may be controlled successfully without monitor

ing the cache hit/miss signals directly.

The control of the store operation is complicated somewhat by the control of the

external data pads for output. These pads must be driven starting in phil of the third

cycle of a store and held until the cache indicates a hit. Because the fpuSuspend signal

arrives at the end of the previous phase, it is not possible for the control machine to

decide whether the memory cycle should be repeated and drive the pins accordingly.

Therefore, the driving of the pads in phil is controlled by the information in the second

pipeline stage only if the pipeline is not suspended. In all other cases, the pads are con

trolled by the memory cycle stage and the cache hit signals. The cache hit signals are

used to condition the memory cycle stage because the fpuSuspend signal is not disasserted

until one phase after a cache hit.

Although not strictly under the control of the memory unit, it is appropriate to dis

cuss the register file control structure here. The control of the register file is greatly

simplified by the fact that the file may be addressed as an array. Independent controls

are still required for reading and writing, and separate signals are needed to handle tran

sactions on each of the two register file busses. \Voile arithmetic operations access all por

tions of the register file simultaneously, the two external format memory instructions

access different portions of the file. For this reason, independent controls for each portion

of the register file are used only for reads and writes to and from bus A.

4.2.4:. Arithmetic Control Machine

The sequencing of arithmetic instructions IS handled by the state machine and

machine cycle counter illustrated in Figure 21. Both these sequencers begin operating on

From Decode Logic

arithmetic

opcode vector

(ctrhddop

drkmpop)

d~chalpop

d~c:vrtop

ct~MD/AS

ct~AS/MD

ct~lne

eydecloek

2_

5

- 44-

ph14

d~instr

ct~eycleeloek

dearcond

CLR

Counter

eycleeloek-lnit

5
eycleeloek

To arithmetic datapa.ths

CPU interface

signals

d~fpuSucond

etrl-

Next

State

I •

d~write

&rttluwults

ct~STOP

Figure 21. Organization of Arithmetic Control Unit.

the first execution cycle of an arithmetic instruction. The cycle counter controls the data

path directly throughout the execution of the instruction and signals the arithmetic state

machine when all results have arrived at the destination latches. The state machine in

- 45-

turn monitors the trap and suspend signals during instruction execution while controlling

the writing of results and the fpuBusy line. The machine will never stop the execution

cycle counter on a suspension hut instead will delay the result write. In addition, the

counter will be reset by the state machine if the instruction finishes or is trapped.

As seen in Figure 22, the arithmetic state machine is implemented using eight states.

Transition Vector := < ctrl-start-arithop, ctrl-fpuSuspend, ctrl-STOP >

NOTE: Signal ctri-TRAPRecvd overrides Transition Vector.

Figure 22. Arithmetic State Machine Diagram.

Since the execution of the FPU instruction continues during suspension, an instruction

may finish before the CPU instruction pipeline has proceeded two cycles. Because of this,

separate states are required to sequence the first two non-suspended execute cycles because

all instructions may be trapped during this period. In addition, an extra "early wait"

state is needed for those instructions that are suspended just after the instruction cycle.

After these cycles have been completed, non-suspended instructions will always com

plete and write results without trapping. These instructions move to the "safe" state or

- 46-

directly to the write state if they already have completed. Suspended instructions must

remain in a trappable state until the pipeline suspension has released. An extra state (the

"prepare to write" state) is necessary for instructions completed during suspension to shut

off the machine cycle counter immediately upon instruction completion. Finally, the

machine may transit from the write cycle to inactivity or to the first execute cycle.

Note that this final transition allows the overlapping of the write cycle of an FPU

instru<"4.ion with the fetch cycle of the subsequent one. This overlapping also affects the

implementation of the machine cycle counter, moving the clear signal for the counter to

phi4. Ordinarily, both the state machine and cycle counter are master/slave devices that

make their transitions as described in the section on control timing. Except for this com

plication of the clearing condition, both portions of the sequencer are implemented in a

very straightforward manner.

The rest of the arithmetic control unit is distributed among the various datapath

blocks. Each block receives the decoded opcode vector, both the master and slave of the

cycle counter, and all four clock phases. Almost all of the detailed control signals are sim

ple combinations of this state information. The only notable exception to this is the

multiply/divide accumulator loop which uses an extra flip-Bop as a sequencer. Because

the loop is active for many clock cycles, the extra state bit proved easier than a partial

decoding of the cycle counter to implement in Slang.

5. FUNCTIONAL TESTING

5.1. Introduction

\Vhile the FPU hardware description is useful as documentation, its primary purpose

is to verify the chip's logic and circuitry. The first step in this verification process is the

testing of the description itself. Fortunately, a ready made suite of Boating point vectors

is available for testing the arithmetic of any implementation of the IEEE standard. These

test vectors (collectively known as the IEEE test suite) were adapted to serve as input vec

tors for the functional testing of this chip. The adaptation process required both a pro

gram to customize the content and formatting of the IEEE test suite and a set of func

tions to run the resulting diagnostics through the description. The format customization

step is run separately from the simulator and generates files containing the test vectors

- 47-

and the expected results. The simulator in turn has been enhanced with special functions

to generate SPUR FPU diagnostics from these files, drive the FPU description, and check

the results given by the hardware.

5.2. IEEE Format Converter

As mentioned above, the IEEE test suite customization step is run as a separate pro

cessing step outside the Slang simulator. It converts the operand, precision and rounding

mode specification of every test vector into an intermediate format which can be easily

converted to SPUR diagnostics. Because the chip implements a subset of the standard,

the expected result vectors must also be adjusted to reflect the result and FPSW gen

erated by the hardware. The details of this conversion step are beyond the scope of this

report, however a description of the details of the input and expected result file formats is

in Appendix B of this document.

5.3. Slang Testbed

The Slang hardware description language has very few functions built in for running

preformed diagnostics. Thus, all of the functions that form the testing environment for

the FPU description were written from scratch. This homemade testbed consists of func

tions for initializing and driving the simulator, transforming the input test vectors into

FPU instruction sequences, and checking the hardware results for the sequence against the

expected results. Besides reading the input and expected results files mentioned above,

the testbed generates a error file that documents the success or failure of each test vector.

In addition to these functions, extra Slang nodes have been added to the hardware

description; these nodes drive the CPC-FPU interface, supply instructions and data to the

chip and collect the result data. These nodes provide the execution environment for the

FPU chip and totally control the simulation once it has started.

Currently, a very simple execution model is used for testing the chip. A translator

function converts test vectors into a sequence of instructions to load the operands of the

test, execute the target arithmetic instruction and store the result. A single node (called

the "executor") drives the interface, supplying the instructions one at a time to the chip.

Another node (the "verifier") detects the end of every instruction and collects the results

of every store instruction. At the end of every sequence, the verifier node calls a check

function to verify the results, and the executor node calls the translator function to form a

- 48-

new sequence. This process is repeated until no more test vectors are available.

The above model provides the simplest method for testing the validity of the arith

metic performed by the chip. However, it does not test the capabilities of the chip control

such as traps, suspends and parallel executiono Furthermore, still other testing capabili

ties will be needed to use the FPU description as a layout verification tool. All of these

capabilities may be achieved, however, by making modifications and possibly additions to

the two nodes described above.

6. SLANG IMPLE:MENT ATION NOTES

The previous sections of this report have illustrated the flexibility of Slang as a

hardware description language and as a simulation tool. However, that flexibility has

caused several problems with the structure of the chip description. The worst of these

problems is the absence of Slang constructs for coding separate chip component descrip

tions as separate modules. Because a Slang node may connect to any other node on the

chip, it is very difficult to determine from Slang the interfaces between major components

of the chip. The resulting lack of modularity reduces the readability of the entire descrip

tion and makes incremental testing of chip components almost impossible. Other prob

lems were encountered during the implementation of particular components of the descrip

tion; these are described separately in the sections that follow.

6.1. Datapath

Several difficulties arose while writing the Slang description for the datapath com

ponents. The most notable of these is the lack of any support in Slang for numeric values

containing more than 32 bits. Because of this, all floating point fractions in this descrip

tion are represented as three element lists. Although many Slang functions (such as mul

tiplexing) are data type independent, special arithmetic functions had to be written in

Lisp to handle the new data type. These functions had to handle Slang constructs such as

UNK as well.

Another related problem was the inability to explicitly declare the size of Slang node

values. \Vhile the correct size for a given node could always be maintained by special

functions, the correct size for a given numeric value is often impossible to determine from

- 49-

the description. Thus, portions of the Slang description for the load/store and fraction

datapaths are confusing to read because operands change size between nodes in an opaque

manner.

Finally, this description contains its own model for all busses, replacing a Slang bus

model that was difficult to use and virtually undocumented. The FPU bus model

currently takes into account precharging and gives error messages when glitches affect the

bus or multiple values are driven on the bus simultaneously. It is also very easy to deter

mine from the model which signals gate onto a particular bus. Unfortunately, Slang does

not support the notion of bi-directional signals. Thus, it is difficult to determine which

components are taking values from the bus at a given time.

6.2. Control

The hardware description of the FPU control section relies heavily on homemade

Slang primitives for latching and timing. In this description, a latch node is implemented

as a multiplexor whose select signal feeds its output back to the node. The logic nodes

that depend on that latch will not evaluate when the latch control signal is inactive

because the actual data value in the latch does not change. Thus, all latches (even those

in data loops) may be controlled successfully by simply gating the control signal with the

appropriate clock phase. The clock phases themselves are derived from a special node

called masterclock which is guaranteed by Slang to be the first event scheduled in each

evaluation sequence. The function of the masterclock node is programmer definable; here

it is a mod 4 counter which is then decoded into four separate clock phase signals.

Given the primitives mentioned above, the implementation of the control section

description is relatively straightforward. The only difficulty encountered in the control

section concerns the timing of the register file and bus operations. A successful read or

write requires that the exchange of data between these components occur in the proper

order within one clock phase. This is done by manipulating the depends clause for these

nodes and by adding extra nodes to delay the evaluation of the register file control.

The pipeline for the memory control unit was implemented in a manner similar to

portions of the datapath description. The arithmetic state machine consists of only one

node. This node contains a single cond clause (LISP equivalent of case statement) where

each condition corresponds to a transition in the state machine. Finally, all of the

-50-

combinational logic in the control section IS implemented usmg simple AND, OR and

Equal (decode) clauses.

7. CONCLUSIONS

The SPUR floating point unit increases the performance of IEEE arithmetic by

efficiently implementing the most common arithmetic operations in hardware. To further

increase performance, the execution of arithmetic instructions may be overlapped with

CPU instructions as well as FPU load and store operations. This requires an internal

organization containing separate datapath sections for memory and arithmetic operations;

the register file is shared between the datapath sections. Within each of the sections,

separate datapath components are devoted to the different FPU operand data portions.

Many of the datapath components participate in more than one instruction sequence, how~

ever. The control structures for the chip are also divided into arithmetic and memory

sections; these sections both rely on the instruction decoder and CPU-FPU interface for

input signals. The two structures are organized differently to meet separate instruction

control requirements.

Currently, the chip hardware description is being tested using the IEEE test suite for

input vectors. Later, the description will be used alongside a switch level circuit simulator

to verify the chip layout. In addition, the debugged version of the description will serve

as a guide in the final datapath layout and control generation steps for the chip. Thus,

the same hardware description will serve as a testing and as a documentation tool.

This adaptation of the same chip description to different purposes is made possible

by the flexibility of the Slang hardware description language. This flexibility also has

resulted in a disturbing lack of structure in the chip description, however. Furthermore,

the coding of the description was hampered by the lack of modularity and arithmetic sup

port for large vector operations. Overall, Slang should be improved significantly in these

areas before another large chip description effort is undertaken.

As with all large projects, this chip description was by no means a solitary effort. As

the two faculty advisors for this project, Randy Katz and Carlo Sequin have provided the

leadership necessary to guide this work through to completion. George Taylor provided

the algorithms for the chip's arithmetic. His experience with floating point hardware

- 51 -

resulted in algorithms that were efficient in both time and chip area. Finally, much of the

information input to this description has come from the full time members of the SPUR

FPU project group, B.K. Bose, Paul Hansen and Corinna Lee. In a sense, this hardware

description is a fusion of their efforts on the implementation, interface and architectural

aspects of the chip respectively. Also, it is their responsibility to take the hardware

description and use it in their effort to complete the implementation of the chip.

8. REFERENCES

[FoD83] J. K. Foderaro and K. S. V. Dyke, SLANG Slinger's Cyclopedia, UC Berkeley

internal working document, 1983.

[HaK86) P. M. Hansen and S. I. Kong, SPUR Coprocessor Interface Description, UC

Berkeley internal working document, May 23, 1986.

[HEL85) M. D. Hill, S. J. Eggers, J. R. Larus and G. S. Taylor, SPUR: A VLSI

Multiprocessor Workstation, Report No. UCB/Computer Science Bpt. 86/273,

Computer Science Division (EECS) University of California, Berkeley,

December 1985.

[IEE85]

[Kat85]

[Lee86]

[Tay85]

IEEE, IEEE Standard 754-1985 for Binary Floating-Point Arithmetic, Order

number CN953, 1985.

R. H. Katz, SPUR Architecture Design Rationale, Proc. of CS!29!2i:

Implementation of VLSI Systems, R.H. Katz, Ed., University of California,

Berkeley, September 1985. Computer Science Division Technical Report

UCB/Computer Science Opt. 86/259.

C. G. Lee, Description of the SPUR Floating-Point Unit, UC Berkeley

internal working document, March 17, 1986.

G. S. Taylor, Radix 16 SRT Dividers with Overlapped Quotient Selection

Stages, in Proceedings of the Seventh Annual IEEE Symposium on

Computer Arithmetic, June 1985, 64-71.

Appendix A

Sequence of operations for SPUR FPU Instructions.

Jul 17 22:29 1966 overviewtob.doc Page 1

The following is a table for each instruction currently supported in the
SPUR FPU unit.
The table contains the exact sequence of operations required
to complete that instruction as wei I as the control signals and datopath
components required to perform that operation.
These tables is not intended to describe the rationale of the FPU datopoths
or control.
It does, however, i I lust rate the timing and control requirements on the
datopoth components, and it wi I I give an i I lustration of the use of shored
resources {reg. file, busses, dotopoth components) in the FPU.
The sequences for the actual instructions ore given in three files (one
for LD/ST, one for odd/sub, one for mul/div).
This file contains information on oil uses of the register file
ond busses.

REGISTER FILE ACCESSES

TI~E/SIGNALS/CO~PONENTS

1-4, phi4,fpu-RS1pin,
ctrl-regnumbA

1-4, phi4,fpu-RS2pin,
ctrl-regnumbB

2-1, ctrl-reod-regsA,
!froc,expn,sign!-regfi le

2-1, ctrl-read-regsB,
lfroc,expn,sign!-regfi le

4-2, ctrl-regnumbA
ctrl-lotch-regnumbA

4-3, ctrl-write-regsA,
lfroc,expn,sign!-regfi le

??-2, ctrl-regnumb8,
ctrl-lotch-regnumb8

??-3, ctrl-write-regs8,
lfroc,expn,sign!-regfi le

COMMENTS:

ACTION/CO~I.4ENTS

Send RS1 to regi!ter file for reading onto
A bus. Must be done in parallel with
operation decoding.

Send RS2 to register file for reading onto
B bus. ~ust be done in parallel with
operation decoding and is therefore done
without knowing whether on actual read wi II
toke place.

Read value onto regi!ter Abu!. Should
read on stores and arithmetic operation!
and if not !uspended.

Read value onto register 8 bus. Should
read only on arithmetic operations if not bu!y
and if not !uspended.

Load regi!ter decode latch for write
from A bus. The register number come!
the load/store opcode !tate vector!

Write value from regi!ter A bus.
write only on stores.

Should

Load regi!ter decode latch for write
from 8 bus. The register number comes
a temporary Iaten where the destination
register number is held throughout the
or i thmet i c operation (ct r 1-regnumbTt.lP).

Write value fror~ register 8 bus. Shoulc
write only in the write cycle of arithmetic
operations.

1) Regi!ter file is arranged such that all reads occur in phi1 and oil
writes occur in phi3.

2) There is no conf I ict becau!e both !ources of a read (store t
arithmetic operation) occur in the some cycle.

3) Although writes from arithmetic operations and load! can happen
in the !orne cycle, they occupy different bus!e!. Thi! implies
a dual-port write register file.

BUS ACCESSES

TIME/SIGNALS/COMPONENTS

2-1 , c t r I-re ad-reg! I A. Bl ,
lfrac,expn,sign!-reg-jo,bj,

ACTION/COMMENTS

Read out content! of regi!ter file onto
regi!ter file bu!ses.

Jul 17 22:29 1986 overviewtob doe Page 2

jfrae,expn,signJ-reg-busJA,8J.

2-1 ,et r !-gate-regs-busses,
lfrae,expn,sign~-reg-busJA,8J
ifroe,expn,sign -busiA.8J.

2-3,etrl-gote-frocb-PPSslove,
froc-b,md-PPS-slave,frac-bus8

Connect register file onto arithmetic unit
busses on arithmetic operations.

On divides, route dividend into partial
remainder latch to start operation.

3-1,froc-intermed,froc-bus8 Route complemented dividend,multipl icond
ctrl-gate-froeintermed-froc8us8 to selection latch on multiplies/divides.
md-compmcd-lotch.

4-3,reg-loodlotch-slove, Gate different portions of a load operation
etrl-gate-loadlotch-ifrac,expn,signJ8us,

onto register file busses for write to
lfrae,expn,signJ-reg-busA. register file.

16-3,20-1 J ,md-PPfS,CJ-resul t,
etrl-gote-PPS/C-froc8us,
froc-busJA,8J,froc-addleft,
froc-right.

P-3,22-1J,expn-bus8,
ctrl-gote-expndest-expn8us8,
expn-dest,expn-right.

21-1 , c t r I -gate-quo t i en t- f r a c 8 us
f r a c-b us I A . 8 J , m d- po s q- res u I t ,
md-negq-result,froc-oddleft,
froc-right.

? ?-3, e t r 1-w r i te-o r i t h res u I t s,
ctrl-gote-expndest-expn8us8,
jfroc,expn,signJ-dest,
jfroe,expn,signJ-bus8.

??-3,ctrl-write-orithresults,
jfroc,expn,sign~-bus8.
jfroc,expn,sign -reg-bus8.

Gate results of multiply and partial
remainders of divide for final
accumulation in fraction box.

On multiplies and divides, route initial
result exponent bock to exponent ALU for
computation of final result.

Gate quotients to fraction for final
accumulation on divides.

Place all orrithmetic results on bus 8
to be written bock to register file.

Connect arithmetic unit busses to register
file busses on register file write.

Jul 17 22:28 1986 oddsubtob.doc Page 1

Sequence Tobie for Add/Subtract Instructions

TIME/SIGNALS/COMPONENTS

ADD/SUBTRACT

ACTION/COMMENTS

NOTE: Register file activity already described in its own section.

2-1. ctrl-gote-regs-busses, Connect register file output to main
ffroc,expn,signl-reg-busjA,BI dotopoth busses.
jfrac,expn,signl-busjA,BI

2-1, ctrl-latch-moinops,
ctrl-lotch-signops,
ctrl-lotch-expndiffs,
frac-o,froc-b,sign-a,
sign-b,expn-o,expn-b

2-2. ctrl-latch-expnshamt
expn-shomt,expn-ge128,
expn-BgtA.

2-l3.4l,froc-lleft,rightl.

ctri-MD/AS,froc-right-prenorm
f r a e-ll e f t , r i g h t l-AS.

2-3,expn-BgtA-tmp,
ctrl-lotch-expnodder-inleft,
expn-left.

2-4,ctri-S/A-op,
ctrl-frocodder-op,
sign-dest.

3-1 , c t r 1- I o t c h- f r a cod de r- i n

3-11 , 2 I . c t r I - f roc odd e r- o p ,
ctri-MO/AS,froc-oddleft,
froc-corryin,froc-right,
free-odder-result.

3-3,ctrl-lotch-frocintermed

j3-4,4-1l,sign-intermed,
froc-roundmode,sign-result
froc-obs-intermed,
froc-encoder-moinin,
froc-S/A-expn,
froc-normdist-shifter.
f roc-Sh if t-GT 1.

Latch dotopoth inputs at !fraction,
exponent,signl boxes.

Latch in difference vectors, result of
exponent comparison.

Choose number with greatest exponent and
route to the left. Shift right hand
fraction by expn-shomt for decimal point
alignment (generating roundbits).
Pass through entry multiplexors for
multiply/divide input.

Select greater of input exponents and
route to left side of exponent ALU for
generation of result exponent.

Generate the control for determining
whether on actual subtraction should be
done, as well the result sign.

Latch output of alignment section and pass
through to orithemetic unit.

Complement left hand input and assert
corry input if subtract. Do actual addition.

Latch in signed intermediate result.

Handle pre-normolizotion,rounding
of incrementing of result fraction.
Generate exponent adjustment distance
and exponent odd/subtract signal.

(NOTE: Should latch in again in 4-1, b·Jt don't yet in the SLANG.)

13-4. 4-1 ! .
froc-encoder-zerodet,
froc-normdist-encoder,
froc-result,froc-dest,
ct r 1-1 otch-f rocdest.

4-j1,2! ,expn-S/A-ctrl,
ctrl-lotch-expnodder-inright,
expn-r i ght, expn-resu It,
ex p n-o p- r i g h t , ex p n-car r y i n .

14-31 ctrl-lotch-expndest,
expn-dest, f roc-dest,
sign-dest,
c t r I -w r i te-ar i t h res u I t s
ctrl-gote-busses-regs.

Do final normalizing shift of fraction and
generate zero-detect signal. Latch
result into destination latch.

Add or subtract normalizing distance to
form the final result exponent.

Latch in final exponent and write all
results bock to register file.

(NOTE: Will move exponent result write to phi2.).

Sequence Table for ~ultiply Instruction

TI~E/SIGNALS/CO~PONENTS

~ULTIPLY

ACTION/CO~~ENTS

NOTE: Register file activity already described in its own section.

2-1, ctrl-gate-regs-busses, Connect register file output to main
lfrac,expn,signf-reg-busfA,BI datapath busses.
ftrac,expn,signf-busfA,Bf

2-1,ctrl-latch-mcds,
md-mcd-latch,md-mpr-latch.

2-1,ctrl-latch-fracadder-in,
ctri-~0/AS,ctrl-fracadder-op,
frac-left,frac-right.

2-1 1,2f,ct rl-f racadder-op,
ctri-~0/AS,frac-addleft,
frac-carryin,frac-right,
frac-adder-result.

2-3,ctrl-latch-fracintermed

2-1,ctrl-latch-signops

2-1,ctrl-clear-selmrb,
md-selmrb.

2-1 , ex p n- I e f t , ex p n- r i g h t ,
ctrl-latch-expnadder-inleft
ctrl-latch-expnadder-inright.

2-11,21. expn-S/A-ct r I,
expn-op-right,expn-carryin,
expn-result.

2-3,ctrl-latch-expndest,
expn-dest.

2-4,ctrl-latch-signdest,
sign-dest.

2-4,ctrl-clear-PPS/C-master,
md-PPjS,CI-moster.

3-1,ctrl-latch-compmcds,
md-compmcd-latch
!roc-busS.

3-1,ctrl-mul/div-lotch

3-1,ctrl-lotch-PPS/Cslove,
md-PP!S.CI-slove,
md-xtrobits-slave,
md-roundodder-PPIS/C!Iotch.

3-1,ctrl-lotch-8oothrcd,
md-boothresult-mpy,
md-boothresult-lotch.

3-2,ctrl-lotchPPfS,C!-moster,
md-mcdmuxf1-4,inf,
md-csa-suml1-4f,
md-csa-carryf1-4l.

3-2,ctrl-inc-selmrb,

Latch multiplicand and multiplier
into input section.

Latch multiplicand into left hand side
of fraction box. Place 0 in the right
side, causing multiplicand to be complemented.

Complement left hand input and do on
addition to form complement.

Latch in multiplicand complement.

Form result sign by XORing input signs.

Clear multiplier byte counter.
Start Booth recoding for 0th byte.

Latch input exponents into exponent ALU to
form initial result exponent.

Add input exponents for initial result.

Latch initial result into destination.

Latch in result sign.

Clear master of multiply result latch.
Also clear master of sticky bit accumulator
latch.

Gate complemented multiplicand onto 8
bus and latch at multiplicand input
section.

Activate a latch to control multiply/
divide pipeline. Loop starts on an odd phose
with the loading of the result slave latches
and the latching out of the recoded multiplier
byte. The result vectors propagate to
the carry save adder stage while the
multiplier byte is used to select different
versions of the multiplicand.

latch in initial value of result slave latches
for both the main and rounding results.
These should both be zero initially.

Latch receding of 0th multiplier byte
to multiplicand selector multiplexors.

Propagate multiplicands through selection
multiplexors. Add to previous iteration's
results and latch in result master.
(Addition is corry-save!!).

Increment byte counter and recode next byte

Jul 11 :l:l::Z~ 1~1:Hi multob.doc 1-'oge :z

md-selmrb,md-mpr-byte,
md-selmrb,md-boothresult-mpy,

3-2,ctrl-lotchPPS/C-moster,
md-roundodder-dest,
md-xtrobits-dest,
md-xtrobits-moster,
md-xtrobits-corryout.

3-3,ctrl-lotch-PPS/Cslove,
md-PPlS,Cl-slove,
md-xtrobits-slove,
md-roundodder-PPIS/Cllotch.

of multiplier.

Compute sum of the eight rounding bits for this
iteration. Route the corry out of this
addition to the rightmost bit of the corry
result vector for the next iteration.
Perform on OR on the eight result bits to form
the sticky bit for this iteration.

Move results to slave latches for next
iteration. Note that slave roundbit latch
is accumulated into roundbit addition ORing.

I NOTE:
one. l

Pi p e I i n e com p I e t e s o toto I of n i n e i t era t i on s (e i g h t oft e r t h i s

7-2,ctrl-lotch-PPS/Cmoster,
md-PPIS.Cl-moster,
md-PPfS,Cl-result,
md-corryin-mulop,
md-roundbits-mulop,
md-roundodder-dest,
md-xtrobits-moster.

7-3,froc-corryin-IIAD,
froc-roundbits-IIAD,
ctrl-gote-PPS/C-frocBus,
md-PPIS,Cl-result,
froc-busfA,Bl.

7-3,ctrl-lotch-frocodder-in

7-lJ,4l.ctrl-frocodder-op,
ctri-IIAD/AS,froc-oddleft,
froc-corryin,froc-right,
f roc-odder-resu It.

8-1 , c t r I- I at c h- f roc i n termed

Load in final result of multiply. Shift
result by one and concatenate uppermost
bit of rounding odder. Rest of odder
result wi I I make up rounding bits.

Gate result vectors,
fraction box odder.
to that addition.

rounding bits to
Also send corry input

Latch output of alignment section and pass
through to orithemetic unit.

Do actual partial product addition.

Latch in signed intermediate result.

(NOTE: The path to the final result is the some here as it is for the

odd/subtract instruction. Please see that table for additional

exp I onot ion.)

8-3,expn-dest ,expn-b,
ctrl-gote-expndest-expnBusB.
ctrl-lotch-expnb,expn-busB.

8-3,expn-left,
ctrl-lotch-expnodder-inleft.

Feed initial result exponent bock to exponent
input B for generation of final result.

Latch initial result through to left side
of exponent ALU. Prepare for addition of
normalizing distance in order to form
final result.

(NOTE: Addition of normalizing distance
does in the odd/subtract instruction.
8-4.)

occurs in some way as it
Exponent result is latched in

9-3,ctrl-gote-busses-regs,
expn-dest,froc-dest,
sign-dest,
c t r I -w r i te-o r i t h res u I t s.

Write oil results bock to register file.

Jul 17 22:28 1986 divtob.doc Page 1

Sequence Table for Divide Instruction

TI~E/SIGNALS/CO~PONENTS

DIVIDE

ACTION/CO~~ENTS

NOTE: Register file activity already described in its own section.

2-1, ctrl-gote-regs-busses, Connect register file output to main

l froc,exp
n,sign~-reg-busiA.Bl dotopoth busses.

froc,expn,sign -busiA.BI

2-1,ctrl-lotch-mcds,
md-mcd-lotch,md-mpr-lotch,
froc-o,froc-b.

2-1 ,ctrl-lotch-frocodder-in,
ctri-~D/AS,ctrl-frocodder-op,

froc-left,froc-right.

Latch divisor and dividend into input section.

The divisor goes into the same latch used
by the multiplier in the multiply
instruction, while the dividend occupies the

multiplicand latch. NOTE: We also latch

the operands into the fraction box input
latches.

Latch dividend into left hand side
of fraction box. Place 0 in the right

side, causing dividend to be complemented.

(NOTE: Dividend complementation proceeds in a manner similar to

multiplicand complementation in the multiply instruction.)

2-1,ctrl-latch-signops

2-1 , ex p n- I eft , ex p n- r i g h t •
ctrl-latch-expnadder-inleft
ctrl-latch-expnadder-inright.

Form result sign by XORing input signs.

Latch input exponents into exponent ALU to

form initial result exponent.

(NOTE: Initial result exponent generation and sign result generation

proceeds as seen in the multiply instruction.)

2-2,ctrl-clear-PPS/C-master, Clear master of divide result latch.

md-PPIS.Cl-moster.

2-3,ctrl-gate-fracb-PPS1ave,
ctrl-mux-PPSiove-in,
f rac-b. f r ac-busB,
md-PPIS.C!-slave,
ctrl-latch-PPjS,CJ-slave.

2-4,ctrl-clear-quotients,
md-jpos.negJquotient-latch.

3-1,ctrl-latch-compmcds,
md-compmcd-latch
frac-busB.

3-1 , c t r I -m u I I d i v- I at c h

3-1 ,md-qboxpla-divin,
md-qboxodder-injleft, right!,
md-qboxpla-dsrin.

Load dividend (which was contained in the
f rac-b I etch) onto 8 fraction bus and into

remainder result slave latch (formerly known

as the partial product latch). Note that the

other partial remainder latch is loaded
with the zero contained in the master latch.

Clear quotient estimeote latches.

Gate complemented dividend onto B
bus and latch at dividend (formerly
multiplicand) input section

Activate a latch to control multiply/
divide loop. The divide loop officially
starts in on odd phose witt- the generation

of the quotient estimate based upon the divisor

and partial remainder vectors.
In even phases, the partial quotient is used

to select different versions of the
multiplicand. This result and the previous

partial remainder ore accumulated and
latched to form the new port iol remainder.

This selection/accumulation process uses
the some hardware employed for partial
product generation in the multiply
instruction. NOTE: This is a single loop,

NOT a pi pel inell The only constraint on this

hardware is that the entire loop must complete

in two clock phases.

Start divide loop by setting up inputs to
the quotient estimation PLA. For first
input, odd together topmost eight bits of

partial remainder vectors and toke topmost

six bits of that result. Other input consists

of the topmost four bits of the divisor.

Jul 17 22:28 1986 divtob.doc Page 2

3-l,md-qboxplo-mux-out,
md-qboxplo-quotient-out,
md-posq-dest,
md-negq-dest.

3-2,ctrl-lotchPPfS,Cl-moster,
md-mcdmux1,
md-cso-suml1-4l.
md-cso-corryi1-4J.

3-2,ctrl-shift-quotients,
md-fpos,negJquotient-lotch.

3-3,ctrl-lotch-PPS/Cslove,
md-PPIS.CJ-slove.

Quotient estimation PLA output appears in two
forms. One form is a "one-hot" encoding that
drives the selection of the next dividend.
The other is on encoding that is broken into
two bit estimation vector that is either
positive or negative.

Propagate dividend through selection
multiplexors. Add to previous iteration's
results and latch in result master.
Note that only one selection multiplexor
is needed here.

Latch in first quotient esimotion.

Shift portio! remainders to the left by
two ond move to slave latches for next
iteration.

I NOTE: Loop completes o total of 34 iterations {33 after this one).

19-4,ctrl-lotch-PPS/Cmoster,
md-PPIS.CJ-moster,
md-PPjS,Cl-result,
ctrl-shift-quotients,
md-fpos,negJquotient-lotch.

2 0-1 , f roc-bus I A , B l ,
froc-roundbits-MD.
ctrl-9ote-PPS/C-frocBus,
md-PP!S,Cl-result.

Load in final remainder of divide
ond the rightmost two bits of quotient.

Gate partial remainder vectors onto fraction
busses to fraction box odder.

I NOTE: Alignment of these vectors is current INCORRECT in the Slong.J

2 0- 1 , c t r I - I a t c h- f r o cod de r- i n

20-f1,2J,ctrl-frocodder-op,
ctri-MD/AS,froc-oddleft,
froc-corryin,froc-right,
froc-odder-result.

20-3,ctrl-lotch-frocintermed

20-3,ctrl-lotch-remsign,
froc-remsign-lotch.

20-4,md-quotient-roundbits,
froc-remsign-lotch,
md-posq-result,
md-negq-result,
md-roundbits-divop,
md-corryin-divop.

21-1 ,froc-corryin-MD,
froc-roundbits-MD,
ctrl-gote-quotientfrocBus,
md-posq-result,froc-busjA,SJ,
md-negq-result.

21-1,ctrl-lotch-frocodder-in

21-f1,2J,ctrl-frocodder-op,
ctri-MD/AS,froc-oddleft,
froc-corryin,froc-right,
froc-odder-result.

21-3,ctrl-lotch-frocintermed

Latch output of alignment section and pass
through to arithemetic unit.

Complement left hand input and assert
corry input. Do actual subtraction.

Latch in signed intermediate result.

Toke sign of the partial remainder.
NOTE: This is the only port of the
port iol remainder needed to form the
final quotient.

Prepare positive and negative quotient
estimate vectors for final subtraction.
Must actually do subtraction to form
the three rounding bits, using the sign
of the partial remainder as the corry input
of this subtraction. The corry output of
this subtraction is cascaded to the
final quotient subtraction.

Gate quotient vectors, rounding bits to
fraction box odder. Also send corry input
to that subtraction.

Latch output of alignment section ond pass
through to orithemetic unit.

Do quotient estimate subtraction.

Latch in signed intermediate result.

(NOTE: The path to the final result is the some here as it is for the

Jul 17 22:28 1986 divtab.doc Page 3

add/subtract instruction.
explanation.)

Please see that table for additional

22-1 ,expn-dest,expn-b,
ctrl-gate-expndest-expnBusB,
ctrl-latch-expnb,expn-busB.

22-1 ,expn-left,
ctrl-lotch-expnodder-inleft.

feed initial result exponent back to exponent
input 8 for generation of final result.

Latch initial result through to left side
of exponent ALU. Prepare for addition of
normalizing distance in order to form
final result.

(NOTE: Addition of normalizing distance occurs in same way as it
does in the odd/subtract instruction. Exponent result is latched in
22-2.)

22-J,ctrl-gote-busses-regs,
expn-dest,froc-dest,
sign-dest,
c t r I -w r i t e-o r i t h res u I t s .

Write all results bock to register file.

Jul 17 22:29 1986 memoptab.doc Page 1

Sequence Table for Load/Store Instructions

TIME/SIGNALS/COMPONENTS

1-4, ctrl-ste1Ct1,
reg-storelotch-moster

1-4, phi4,fpu-RS1pin,
ctrl-regnumbA

2-1, etrl-storelotch-master,

reg-storeloteh-moster

3-1. etrl-storelotch-slave,

reg-storelotch-slove

3-1, etrl-octivote-dotopins,

fpu-DATApin,
etrl-store-memcycle.

TIME/SIGNALS/COMPONENTS

3-3, ctrl-octivote-dotopins,

fpu-DATApin,
ctrl-store-memcycle.

3-3, ctrl-loodlatch-moster,

reg-storelotch-moster.

4-2. ctrl-loodlatch-slove,

reg-loadlotch-slave.

4-2. ctrl-regnumbA
ctrl-latch-regnumbA

4-3. ctrl-gote-loodlatch

ifrocBus,expnBus.signBus!

STORES

ACTION/COMMENTS

Choose between fraction bus and eiCponent/

sign bus for store operation. Should be

done as soon as decoding for opcode is ready.

Send RS1 to register file for reading onto

A bus. Must be done in parallel with

operation decoding.

Load master of output latch with result

of multiplexor.

Latch slave of output latch. Should start

driving pads. Should NOT relatch when

suspended.

Should drive pods at this point. On stores,

value driven out should be held unti I cache

hit signal is received (or Trap occurs).????

LOADS

ACT! ON/COMMENTS

On I oads, pads shou I d be set to input

mode on every phi3 where a load is in

the memory cycle.

Load in master of input latch at same

phase as data arrives from cache.

Load slave latch and prepare to write

to register file.

Load register decode latch for write

from A bus. The register number comes

the load/store opcode state vector!

Gate slave of input latch to either

fraction bus or exponent/sign bus based

on type of load being performed.

